低温室效应HCFCs替代物性能分析
在阐述目前国内外HCFCs替代形势的基础上,对热泵空调及冷冻冷藏系统典型HCFCs制冷剂R22和其传统替代制冷剂(R410A,R407C,R404A,R507A),以及低温室效应R22替代物(R161,R290,RTJU4,R32,R717及R1234yf)的热力性能、循环性能及其可燃特性进行对比与分析。结果表明,R161,R290,RTJU4,R717,R32不仅具有零ODP较低GWP值的优势,其热力学及传热学特性也优于传统的HCFCs替代物,其中部分工质在一定的应用条件下具有较好的循环性能。R32,R1234yf和RTJU4的可燃性较小;RTJU4在系统循环性能上具有较明显的优势;R717具有较好热力学、传热学和循环特性,经进一步的系统和部件改进也具有较强的替代潜力。
变温工况下可燃制冷剂的爆炸极限分析
鉴于当前紧迫的HCFCs淘汰形势,很多学者针对替代潜力较大的HFC161和HC1150的热力性质、循环性能以及常温下可燃性等进行了研究,然而针对变温工况下上述可燃制冷剂爆炸极限影响规律的研究却极为少见.为此,本课题组建立了一套由上位机自动控制的可燃气体爆炸极限测试系统,并对HFC161和HC1150在-3~55℃范围内的爆炸极限进行了试验研究.结果表明:在一定的温度范围内,温度升高会使不可燃的混合气体出现热激化现象,而成为可燃可爆状态.当环境温度由-3℃升高到55℃时,HFC161和HC1150的爆炸极限范围分别增加了1.42%、4.59%.低温对制冷剂爆炸极限有较明显的抑制作用;2种工质的燃爆特性的温度敏感区大约位于10~40℃区间,当温度高于40℃或低于10℃时,温度对制冷剂可燃上、下限的影响均减弱.试验结果和变化规律为可燃制冷剂在变温工...
新一代替代制冷剂燃爆惰化机理及实验
二甲醚(DME)以其较好的热力学、传热学和环境特性决定了其有可能成为环境友好型制冷剂或混合工质的组元.不足的是DME具有可燃性,需要对其可燃性及可惰化性进行评估.通过基团贡献法和燃烧学相关理论对含有DME的二元混合工质阻燃剂的抑制系数进行了分析,提出了阻燃制冷剂最小惰化浓度的理论估算公式.对以一定体积配比的A/DME和B/DME混合制冷剂的可燃性进行了实验研究,得到了混合制冷剂的临界爆炸曲线图.结果表明:A和B对DME的惰化体积分数分别为7.04%和9.97%,理论估算值和实验值基本吻合;并得到了三元混合工质A/C/DME和B/D/DME的爆炸浓度分数图.实验结果对新一代替代制冷剂燃爆惰化及安全使用具有现实指导意义.
垂直下降管散体颗粒换热实验台设计与应用
为研究陶瓷球固体热载体与生物质粉颗粒及空气的换热机理,设计了一种分离式垂直下降管颗粒换热实验装置,该装置可以进行陶瓷球和生物质粉2种流动特性完全不同的散体颗粒的换热实验研究。喂料实验表明:陶瓷球和生物质颗粒下料均匀可调、分离完全。根据90℃陶瓷球与室温空气换热实验数据,分析计算出陶瓷球与空气的对流换热系数为291.3 W/(m2.K);以陶瓷球质量流量为1.0、1.2、1.4 kg/min,陶瓷球与生物质粉质量比为15、20、25进行的颗粒换热实验结果表明,随陶瓷球流量、陶瓷球与生物质粉质量比的增大生物质粉升温增大。
-
共1页/4条






