基于经验模态分解的管道超声回波信号噪声消除
在管道超声无损检测中,超声回波信号往往受到电子噪声、结构噪声等噪声的影响,所以在分析缺陷回波信号时,必须对回波信号进行去噪处理.本文提出了一种新型的基于经验模态分解的方法对超声回波信号进行了良好的消噪处理.通过计算,超声回波信号的信噪比大约提高了11dB.
基于改进BP神经网络算法的管道缺陷漏磁信号识别
海底管道漏磁检测信号处理的主要任务是根据霍尔传感器检测到的缺陷漏磁信号来识别缺陷的形态参数.根据漏磁检测原理设计了相关的漏磁检测电路,通过提取信号的主要特征量,利用Levenberg-Marquardt算法在对常用BP神经网络改进的基础上应用其来识别缺陷的尺寸参数,给出了BP神经网络各层数的确定及权值、学习率的调整方法和相应的漏磁信号数据处理过程.漏磁检测数据处理实验表明,该缺陷识别BP神经网络系统具有逼近精度高、收敛速度快等特点.
-
共1页/2条




