基于LMD近似熵和改进PSO-ELM的轴承故障诊断
针对滚动轴承故障特征提取与故障识别困难的问题,提出局部均值分解(LMD)近似熵和改进粒子群优化的极限学习机(PSO-ELM)结合的滚动轴承故障诊断方法。将不同工况信号用LMD分解为一系列乘积分量,不同工况的信号在不同频带的近似熵值会发生改变,结合相关性系数选出前3个分量,计算近似熵定值作为输入的特征向量。针对PSO早熟收敛的缺点,引入自适应权重法与DE算法对PSO进行改进,将特征值输入到改进PSO-ELM网络模型中,对滚动轴承不同工况进行故障识别与分
基于MRSVD与LMD的工业机器人交叉滚子轴承故障特征提取
针对奇异值分解(SVD)优化局部均值分解(LMD)方法提取工业机器人交叉滚子轴承振动信号微弱故障特征分量时出现的模态混淆现象,提出一种基于最大分辨率SVD与LMD的工业机器人交叉滚子轴承故障特征提取方法。以最大奇异值分辨率原则将一维振动信号构造成Hankel矩阵,采用SVD对Hankel矩阵进行分解得到奇异值序列;按照奇异值曲率谱原则及非目标值抑制原则对奇异值序列进行重构,将包含故障突变信息的重构奇异值序列进行SVD逆运算得到重构振动信号;最后利用
基于LMD和MCKD的滚动轴承早期故障诊断
滚动轴承故障产生的初期,信号中的冲击成分受到严重的噪声干扰,导致故障信号的周期特征难以提取。针对这一问题,提出基于局部均值分解(LMD)算法和最大相关峭度反褶积(MCKD)算法结合的滚动轴承早期故障诊断方法。首先应用LMD算法对轴承早期故障信号进行自适应分解,选取与原始信号相关系数较大的乘积函数(PF)分量进行重构;然后应用MCKD算法对重构信号进行降噪,突出周期冲击成分;最后对消噪后的信号进行Hilbert包络处理,从包络谱中即可准确地获取故障特征频率。通过对仿真信号和内圈故障实验信号的分析,证明了该方法的有效性。





