碧波液压网 欢迎你,游客。 登录 注册

基于EEMD-FSK的滚动轴承故障诊断

作者: 金志浩 陈广东 汪红 韩林洋 来源:机床与液压 日期: 2021-07-06 人气:103
基于EEMD-FSK的滚动轴承故障诊断
为了解决轴承故障特征提取中经验模态分解(EMD)出现的模态混叠现象,提出一种集合经验模态分解(EEMD)、快速谱峭度选频和共振解调技术相结合的滚动轴承故障诊断方法。对原始振动信号进行EEMD处理,分解为多个本征模态函数(IMF);将符合峭度准则的IMF分量筛选出来,对其进行信号重构,对重构信号进行快速谱峭度计算得出快速谱峭度图,从图中选出最优频带中心和带宽,确定FIR带通滤波器设计参数;最后通过共振解调技术对滤波信号进行包络分析,得出包络谱确定

改进小波去噪-Teager算子的齿轮微弱故障提取方法

作者: 何巍 袁亮 章翔峰 来源:振动.测试与诊断 日期: 2021-04-22 人气:86
改进小波去噪-Teager算子的齿轮微弱故障提取方法
针对齿轮箱在强噪声背景下齿轮微弱故障振动信号的特征不易被提取的问题,提出将改进小波去噪和Teager能量算子相结合的微弱故障特征提取方法。采用改进小波阈值函数对振动信号进行去噪处理,与形态学滤波和传统小波阈值函数相比能够有效地提高信号的信噪比。对去噪后的信号进行集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)得到若干本征模式函数(intrinsic mode function,简称IMF),计算各IMF分量与原信号的相关系数并结合各IMF分量的频谱剔除虚假分量。对有效的IMF分量计算其Teager能量算子,并重构得到Teager能量谱,对重构信号进行时频分析并将其结果与原信号的希尔伯特黄变换(HilbertHuang transform,简称HHT)得到的边际谱进行对比。实验研究结果表明,本研究方法相比HHT能够对齿轮微弱故障特征进行更为有效地提取,验证了本研究方法在齿轮...
    共2页/12条