地平式大口径地基望远镜主光学系统装调技术
望远镜的装调过程对整个望远镜系统的精度具有至关重要的作用。本文扼要地叙述了地平式大口径地基望远镜系统的装调过程,描述了在整个视场要获得较好像质的工程方法,找出装调的一般规律,其方法主要适用于卡式和R—C式望远镜。装调过程主要包含针对系统的粗调和针对光学系统像差的精调。
极轴式望远镜主镜支撑结构对镜面变形的影响
根据极轴式望远镜的工作特点,以口径为700 mm的极轴式望远镜主镜室系统为例,确定了一套主镜支撑方案。借助于有限元分析软件MSC.Patran详细地建立了系统的有限元模型,选取多种工况,分析了系统在自重作用下的镜面变形情况,绘制了镜面变形误差PV值和RMS值的变化曲线。结果表明:镜面变形主要受α角的影响,随着α的增大而减小,径向支撑效果优于轴向支撑效果,镜面变形误差满足设计指标要求。在主镜室系统竖直放置时,利用Zygo干涉仪测得带支撑结构的镜面变形误差RMS值为28.48 nm,表明主镜在该支撑结构作用下的面形接近于加工检测时的状态,同时也验证了有限元模型的准确性。
极轴式望远镜主镜支撑设计
极轴式望远镜主镜的面形精度受极轴和赤纬轴复合运动的影响,针对其复杂的运动方式,以Φ700 mm主镜为例,设计了一套满足其各种工况要求的轴向及径向支撑结构。运用有限元分析软件MSC.Patran/Nastran对其在水平和竖直放置的极限工况进行了分析,计算出主镜水平状态下的镜面变形误差PV值为19.33 nm,RMS值为4.47 nm;竖直状态下当极角θ为0°时,镜面变形误差PV值为16.19 nm,RMS值为1.26 nm,当极角θ为30°时,镜面变形误差PV值为13.33 nm,RMS值为1.19 nm。分析结果满足设计指标所要求的RMS〈λ/20,PV〈λ/4(λ=632.8 nm),证实了该支撑方案可行。
平面面形绝对检验技术测量误差分析
绝对检验消除了参考面面形误差对干涉测量精度的制约,可实现纳米精度的面形测量。对现有主要平面面形绝对检验技术进行了总结比较,运用泽尼克多项式前36项构建被测平面,对边缘噪声、平面原始精度、旋转角度与偏心误差等因素对典型平面面形绝对检验技术测量精度的影响进行了模拟分析。绝对检验对被测平面原始精度、干涉图分辨率和旋转角度误差不敏感,对边缘噪声和旋转偏心误差敏感。实际测量中,旋转轴心对准误差应小于2 pixel,测量中心面积比取95%左右。
-
共1页/4条






