金属棒材表面缺陷的机器视觉检测方法研究
针对传统金属棒材表面缺陷人工检测方法速度慢、效率低,工作环境差,且工人长时间工作导致的视觉疲劳会造成漏检,错检的问题,提出一种计算量小且稳定性高的检测算法。首先,采用同态滤波与CLAHE对使用检测系统采集的原始图像进行预处理;然后,利用保持平移不变性的非下采样剪切波变换(NSST)对预处理后的图像进行分解,对分解得到的高频成分采用各向异性扩散与改进的自适应gamma校正进行滤波与图像增强;同时,将低频成分与二维高斯函数作卷积运算,从而达到均匀背景的目的;最后通过NSST重构可得到质量较高的原始图像,结合形态学运算及Sobel算法实现划痕缺陷数量、尺寸及位置的检测。实验表明,算法的缺陷检测准确率为93.8%,平均检测时间为0.673s,可满足工业要求。
基于MED-EEMD和ELM的轴向柱塞泵松靴故障诊断研究
针对轴向柱塞泵松靴故障在强噪声干扰下故障信号微弱、故障特征提取困难和故障诊断识别精度低等一系列问题,提出了基于最小熵反褶积、集合经验模态分解和超限学习机相结合的轴向柱塞泵松靴故障诊断的方法。首先采集了轴向柱塞泵在正常和松靴故障两种状态下的振动信号;然后对振动信号进行了最小熵反褶积降噪,排除了噪声干扰,增强了冲击特性;之后利用集合经验模态分解将去噪后的信号分解成了若干个本征模态函数分量,并通过奇异值分解获得了特征矩阵;最后将得到的特征矩阵输入超限学习机、反向传播神经网络和支持向量机等3类分类器,并将识别结果与集合经验模态分解特征提取方法的识别结果进行了对比。研究结果表明:最小熵反褶积和集合经验模态分解结合的方法弥补了最小熵反褶积在强背景噪声下提取特征的局限性,克服了经验模态...
基于D-1DCNN的轴向柱塞泵故障诊断研究
由于传统浅层模型对故障的表征能力有限,同时信号特征的提取又过分依靠专家经验,针对这些问题,提出了一种基于深度一维卷积神经网络(D-1DCNN)的轴向柱塞泵故障诊断方法。首先,采集了柱塞泵正常、松靴、滑靴磨损、中心弹簧失效、配流盘磨损5种状态下的振动信号,并将这些信号制作成样本集,加以标签标记,将样本集划分为训练样本与测试样本;然后,将样本输入到D-1DCNN中,进行了训练样本信号的特征提取工作,通过前向传播和反向传播方式得到了D-1DCNN的具体模型;再使用SoftMax分类器对测试样本进行了分类,并对网络模型中的参数进行了调整,得到了柱塞泵故障诊断的准确率值;最后,通过西储大学的轴承故障信号对此进行了仿真对比。研究结果表明:采用该方法对轴向柱塞泵故障进行诊断,其准确率可达到100%;使用D-1DCNN对柱塞泵进行故障诊断时,不需要人工设...
基于CBLRE模型的轴向柱塞泵空化状态检测研究
空化现象的产生严重制约了轴向柱塞泵向高速高压方向发展,需要对柱塞泵的空化状态检测与智能故障诊断展开研究,因此,结合深度学习网络与非线性分类器的优点,提出了一种基于CBLRE(CNN+BiLSTM+RELM)模型的柱塞泵空化状态识别方法(检测模型)。首先,对不同空化状态下柱塞泵的一维原始振动信号进行了数据增强,并对其进行了标准化处理;然后,利用卷积神经网络(CNN)自动提取信号的特征,并对其进行了特征降维处理;利用双向长短期记忆(Bi-LSTM)网络学习特征序列的时间依赖性,利用正则化极限学习机(RELM)的非线性分类器对特征进行了分类,实现了对柱塞泵的空化状态检测与智能故障诊断;最后,为测试CBLRE模型的性能,搭建了实验平台,在此之上将CBLRE模型与其他模型进行了对比,分析了该模型在不同工况下的性能表现。研究结果表明:该模型的结构稳定、训练时间短,且...
小样本下基于原型网络的轴向柱塞泵故障诊断模型
在实际工程应用中,有限的故障样本数量及噪声都影响轴向柱塞泵故障诊断的效果,所以,如何提高模型在小样本、噪声条件下轴向柱塞泵故障诊断的性能是一个亟待解决的问题。在样本数量有限、噪声条件下,采用基于深度学习的故障诊断方法会出现过拟合、诊断准确率下降的问题,为此,提出了一种小样本条件下基于原型网络的轴向柱塞泵故障诊断模型(方法)。首先,搭建了轴向柱塞泵故障诊断模型,并等量随机抽取了每个故障的样本以构建多个任务,模型使用一维卷积神经网络作为主干,每个任务中包含当前模型、支持集、查询集;然后,利用模型将样本映射到特征空间,在特征空间中,模型使用支持集的同类样本构建了原型点,并逐个将查询集样本与多个原型点进行了距离度量,实现了轴向柱塞泵不同故障的分类;最后,为了验证基于原型网络的轴向柱塞泵故障诊...
基于GADF和ResNet的轴向柱塞泵复合故障诊断研究
轴向柱塞泵是液压动力系统的重要组成部分,由于其发生故障时会产生严重的危害,所以对其进行故障诊断是非常有必要的。然而大量的工程实践表明,轴向柱塞泵往往会同时在不同的部位,以不同的形式表现为复合故障。由于轴向柱塞泵复合故障振动信号的多分量耦合调制特征及特征参数较难确定,所以针对此问题,提出了一种基于格拉姆角差场与深度残差网络相结合(GADF-ResNet)的轴向柱塞泵复合故障诊断方法。首先,对轴向柱塞泵原始振动信号进行了格拉姆角差场(GADF)转换,将其转换为二维数组,将数组以灰度图形式存储,得到了特征样本,并将其分为训练集与测试集,以多标签的方式进行了标记;然后,将样本输入到深度残差网络(ResNet)中,通过前向传播和反向传播方式确定了网络最佳结构和参数;最后,采用实验的方式,通过测试集验证了该模型的可行性和鲁棒性。...
变排量非对称轴向柱塞泵控制性能分析
变排量非对称轴向柱塞泵直接控制非对称液压缸闭式系统具有能效高、结构紧凑等优势。针对变排量三配流窗口轴向柱塞泵存在变量阻力矩脉动大、斜盘倾角振荡频率高等问题,提出在变排量机构中增加阻尼孔以提高变排量控制性能的方案,推导了变排量控制系统的传递函数;通过AMESim仿真模型分别研究了有无阻尼孔情况下的斜盘倾角振荡、变量缸活塞受力、斜盘变量阻力矩等。结果表明,在控制系统阀控缸中加入直径2 mm的阻尼孔,能有效降低斜盘倾角的振荡频率,减小系统脉动冲击。
基于核超限学习机的轴向柱塞泵故障诊断
由于柱塞泵内部结构复杂且结构之间相互耦合,致使对其进行故障诊断的难度也随之增加。为了提高算法的可靠性和诊断速度,将核函数与超限学习机结合的方法用于柱塞泵故障诊断。首先,通过加速度计和流量计采集到泵在正常和不同故障工况下的振动和流量信号,同时对其采用小波包分解进行去噪;然后提取了时域无量纲指标和小波包分解的频带能量值中最大频带能量和系统中流量计的流量值,共8维特征向量;最后用核超限学习机对4种故障(滑靴磨损、配油盘磨损、中心弹簧失效、松靴)进行识别与诊断。结果表明,将核超限学习机用于故障诊断,相比于超限学习机和传统的智能诊断算法支持向量机、BP神经网络有明显的优势。
基于超限学习机的轴向柱塞泵滑靴磨损故障诊断
为了提高故障诊断的分类准确度并减少分类时间,运用一种新的分类器即超限学习机(ELM)对轴向柱塞泵滑靴磨损进行故障诊断与识别。采集轴向柱塞泵正常工作状态和不同滑靴磨损工作状态下的信号;对采集到的信号进行预处理,提取出8维的特征向... 展开更多
-
共1页/9条











