新型高分辨率紫外-可见成像光谱仪波长定标系统设计
限于常规波长定标的局限性,构建了高分辨率紫外-可见成像光谱仪波长定标装置。该系统主要由具有高稳定性的300W氙灯系统、前置施瓦兹型聚光镜、高光谱分辨力的中阶梯光栅单色仪以及后置光学系统组成。利用ZEMAX光学设计软件,对该中阶梯光栅单色仪光学系统进行了优化设计。对设计结果进行了分析,设计结果表明,所设计的高分辨率紫外-可见成像光谱仪波长定标装置满足设计指标要求,扫描光谱范围270~500nm,光谱分辨力小于0.05nm,波长精度小于0.05nm。
紫外辐射计的波长定标及不确定度分析
限于常规汞灯谱线法波长定标的局限性,构建了紫外辐射计波长定标装置,研究了紫外辐射计波长定标的物理过程和测量链,并对紫外辐射计中臭氧十二个吸收波长进行了光谱定标,通过对定标影响量的分析和计算,得到定标影响量的测量不确定度和波长定标合成标准不确定度,其中波长定标合成标准不确定度为0.026mm,同时通过光学CAD分析和实验验证紫外辐射计的光谱带宽可以达到1.0nm。应用自行构建的紫外波长定标装置较好地完成了紫外辐射计臭氧吸收谱线的定标工作,满足了臭氧反演所需的波长精度要求和光谱带宽要求。
空间傅里叶变换红外光谱仪用全柔性机构的设计及研究
研究了采用弹性双平行四边形结构的空间傅里叶变换红外光谱仪用全柔性机构,即运动角镜扫描机构(Moving Cube-Corner)的设计.采用双平行四边形结构,使其运动自由度降为一维,并保证运动直线误差为±3 μm.所采用的弹性结构不仅可以用于控制单自由度微位移机构,而且还可以控制微转角机构.结果表明:该机构特别适合空间仪器和机构所要求的无润滑、无磨损、长寿命的需要.
一种单光束紫外-真空紫外分光光度计的设计
设计了一种单光束紫外-真空紫外分光光度计,主要由150W氘灯辐射源、前置超环面聚光镜、Seya-Namioka全息凹面光栅单色仪、后置反射光学系统、光学调制器、样品/探测器转台、光电倍增管探测器及计算机控制系统组成。利用ZEMAX光学设计软件,对该单光束紫外-真空紫外分光光度计光学系统进行了优化设计,并设计了正弦波长扫描机构。对设计结果进行了分析,从设计结果的分析表明,所设计的单光束紫外-真空紫外分光光度计满足设计指标要求,扫描光谱范围115-400nm,光谱分辨力小于0.5nm,波长精度小于0.1nm。
紫外临边成像光谱仪CCD电路系统的设计
提出一种用于紫外临边成像光谱仪模数分离成像电路的系统设计方案,该方案避免了CCD模拟输出信号的板间传输和数字信号对模拟信号的干扰,使CCD信号处理电路的噪声水平达到了模拟前端数据手册中给出的2 LSB的性能指标。考虑CCD57-10 BI AIMO没有抗溢出结构,在饱和之前会发生电荷溢出现象,提出了临界溢出电子数的概念以取代饱和电子数,并通过增加转移时钟电压以加深势阱深度的方法,将临界溢出电子数从3.0×104提高到了6.0×104,保证了探测器可正确探测设计范围内的强光信号。为了实现更短的曝光时间以增加动态范围,在时序设计中引入了多次电荷倾倒的思想,在不降低探测器动态范围的前提下,将最短曝光时间由163 ms降低到了19 ms,实现了105系统动态范围的设计指标。
中波红外全景成像仪线扩散函数的模拟分析与验证
线扩散函数是评价成像系统成像质量的一个重要参数,线扩散函数的模拟分析与验证对成像仪的研制至关重要。本文首先分析中波红外全景成像仪探测器所接收到的辐亮度,从理论上估算了全景成像仪的线扩散函数,然后通过斜缝法加以验证,试验结果证实了理论模型的正确性。并对线扩散函数经离散傅里叶变换计算而得MTF传递函数,结果与理论得出的系统MTF基本符合,进一步证明了这种模拟分析方法的可行性。
Ebert-Fastie型双层结构平面全息光栅双单色仪的光学设计
为满足空间紫外遥感高精度光谱辐射测量工作的要求,设计了一种Ebert-Fastie型双层结构平面全息光栅双单色仪,由球面准直聚光镜、平面和屋脊转向镜、平面全息光栅及入射、出射和中间狭缝组成,扫描波长范围160~400nm。这种双层结构的特点在于两块完全相同的平面全息光栅安装在同一转轴上做到同轴转动,不但把机构基本上简化为一个单色仪的结构,而且确保了两块光栅同步地进行光谱扫描,色散相加,光谱分辨率小于0.15nm。此外,前后两单色系统被隔成基本封闭的腔体,用来割断两单色系统杂散光之间的相互影响,抑制整个系统的杂散光,整个系统的杂散光水平可达10^-6,满足空间紫外遥感高精度光谱辐射测量的要求。
发散光照射方法标定空间紫外遥感仪器光谱辐照度响应度
以辐射度学为理论基础,推导出了发散光和平行光两种照射方法标定的空间紫外遥感仪器光谱辐照度响应度的结果表达式,分析了影响两种照射方法定标结果的因素。通过相关的测试实验,数值估算了采用发散光照射方法为仪器进行辐照度定标时所引入的定标方法误差。计算结果表明,在假设平行光辐照度值均匀及发散光源为朗伯光源的情况下,采用发散光照射方法定标时所引入的定标方法误差小于1.2%。数值估算结果对于采用发散光照射方法为空间紫外遥感仪器进行光谱辐照度定标具有一定的指导意义。
FY-3紫外臭氧垂直探测仪10^6动态范围线性测量及修正
基于对 FY-3 紫外臭氧垂直探测仪( SBUS) 106动态范围线性测量的需求,提出了一种将中性减光片法和双光阑法相结合的思路,两者相互弥补,得出了 SBUS 整个动态范围的线性度,并进行了非线性修正。不确定度析得出该方法的合成标准不确定度为 0. 44%,而传统的距离平方反比定律法对于 103-104动态范围的合成标准不确定度为 0.62% ,证明了该方法对于大动态范围光电探测器系统线性测量的有效性和优越性。
高光谱分辨率近红外CO2成像光谱仪设计与模拟
为满足大气CO2吸收光谱测量的要求,基于成像光谱仪基本工作原理和光学设计理论,设计了一种近红外CO2吸收光谱高光谱分辨率成像光谱仪。它采用简单平面反射光栅光谱仪结构,由入缝、两片聚焦透镜、平面反射光栅及两片成像透镜组成。透镜材料为普通常用光学玻璃,为减化系统结构透镜采用了二次非球面设计。采用ZEMAX软件对近红外光谱仪的光学系统进行了优化设计与模拟分析。最终设计与模拟分析结果表明,该光学系统光谱范围为1591~1621nm,分辨率〈0.08nm,F数为1.8,满足设计要求。












