关于扭力冲击钻轴承故障诊断预测方法的研究
针对扭力冲击钻滚动轴承易多发故障问题提出了一种改进支持向量机的故障特征提取方法,并结合多维时态关联规则来判断轴承是否出现故障。主要借助抽样算法来形成向量集合,并且在此基础上提升识别效率,找到异常信号,并且对其来源进行判定,通过多维时态关联规则找出异常信号与故障类别之间的关系。通过不平衡转子动力学模型与搭建实验平台试验验证关联规则的准确性和可靠性,再根据各信号的实时状态通过已建立的时态关联规则实时预测下一时间段的信号状态,从而达到实时预测的目的。实验表明,本故障诊断预测方法有效,能够识别和预测滚动轴承的90%的故障。
基于三维深度学习的汽车气动性能实时预测
为适应现代汽车快速设计的需求,采用基于三维深度学习算法的汽车气动参数实时预测,计算汽车的空气阻力系数。利用Rhinoceros软件对包含多种车型的汽车模型库进行T样条曲面重构,制作汽车外形的三维点云数据集;分别利用FLUENT和CFX对模型逐个进行不同风速工况下的仿真分析,得到相应的空气阻力系数,并建立三维深度学习的训练和测试数据集;采用PointNet深度学习框架训练并计算各模型的空气阻力系数。训练集的对比结果表明,采用深度学习方法快速预测汽车气动性能可得到基本满意的效果。
-
共1页/2条




