基于数据挖掘技术的齿轮传动系统啮合接触特性分析
针对在多工况、多不确定性参数所形成的大数据下齿轮传动系统啮合接触特性分析困难的问题,提出了一种基于数据挖掘技术的齿轮传动系统啮合接触特性分析方法。基于多维高斯分布原理与齿轮传动系统有限元模型,构建了系统啮合接触特性数据集;采用最大信息系数分析了各系统参数与啮合接触特性之间的相关性,为预测模型提供了候选特征子集;采用支持向量机和随机森林算法建立了系统啮合接触特性预测模型,实现了对系统啮合接触特性的高效预测。结果表明,基于支持向量机算法的预测模型的预测误差最小,平均绝对百分比误差为3.87%,远小于理论计算误差。其中,在最优特征子集下,基于支持向量机算法的预测模型的各项接触特性预测误差指标显著下降,其平均绝对百分比误差降至3.03%,比优化前的接触特性预测误差减小了21.71%,验证了所提方法的精确...
基于最大信息系数的动态加权特征融合的齿轮箱故障诊断
随着机械设备的精细化和复杂化,用于监测其运行状态的传感器数量和类型不断增多,为了能有效地将多传感器信息融合,补全时间和空间上的信息,提高传感器信息的可靠性,提出了一种基于最大信息系数的动态加权特征融合的齿轮故障诊断方法。利用小波包变换对多传感器采集到的振动信号分解到时频域;计算时频域的特征,通过最大信息系数计算各传感器的权重并以并联融合的方式对特征进行融合;将融合后的特征输入到支持向量机模型进行故障分类。实验证明,融合后的特征聚合度更好,更有利于分类;在两种转速条件下,融合后的故障诊断准确率分别达到了87.72%和99.16%,动态加权融合的诊断效果好于定权重融合的诊断效果。
-
共1页/2条




