碧波液压网 欢迎你,游客。 登录 注册

EWT-KICA联合的滚动轴承故障诊断

作者: 庞博 董辛旻 李长伟 来源:机械设计与制造 日期: 2025-02-05 人气:72
EWT-KICA联合的滚动轴承故障诊断
滚动轴承故障信号能量较弱,故障信息在实际工况下更容易受到噪声的影响,致使很难有效地实现信噪分离。针对这一问题,提出经验小波变换(EWT)和核独立分量分析(KICA)联合的振幅解调方法消噪。使用经验小波变换对轴承故障信号进行分解,根据相关系数准则对分解获得的IMF分量信号进行筛选,重组分量信号并构造虚拟噪声信号。使用核独立分量分析算法对重构的信号进行增强处理并分解,实现信号和噪声的分离。采用包络谱法对分离后的信号进行分析。仿真对照实验表明,该方法具备较强的特征提取能力。

航空发动机的IGWO-KELM故障诊断方法

作者: 崔建国 李勇 王景霖 于明月 来源:机械设计与制造 日期: 2025-01-23 人气:155
航空发动机的IGWO-KELM故障诊断方法
为提高航空发动机滑油系统的故障诊断有效性,提出了一种改进的灰狼算法优化核极限学习机(IGWO-KELM)的航空发动机故障诊断方法,对航空发动机进行了故障诊断技术研究。首先对航空发动机滑油系统的参数数据进行预处理,利用核独立分量分析(KICA)将数据映射到核空间,消除原始特征向量间的相关性,并提取特征系数矩阵;其次,由提取的特征矩阵创建KELM故障模型,为减少人为调节网络参数的随机性对诊断结果造成的影响,采用IGWO算法优化KELM的网络参数,并创建IGWO-KELM故障诊断模型;最后,对所创建的IGWO-KELM故障诊断模型进行了试验验证。结果表明,所提出的IGWO优化KELM的故障诊断方法能有效提高航空发动机故障诊断准确率,诊断准确率达96%,具有很好的应用前景。
    共1页/2条