基于Camshift算法的神经丝蛋白自动跟踪
神经丝蛋白体型细长、形态多变,跟踪难度大。为了能够准确稳定的获取神经丝蛋白质的运动状态,利用了改进的Camshift算法实现了对神经丝蛋白运动的自动跟踪。利用HSV颜色空间的颜色直方图建立目标模型,结合预测点对目标特征点加权。通过在目标颜色概率模型中引入核函数,利用核密度梯度来进行目标搜索,最终在每帧图像中获取目标的具体位置。鉴于神经丝蛋白的特殊性,还对比分析了其他两种概率预测类算法的跟踪效果。实验结果表明,此方法能够快速稳定跟踪神经丝蛋白,为神经丝蛋白质的医学研究提供了新的途径。
融合Camshift与YOLOv4车辆检测算法
作为one-stage代表作的YOLO系列最新算法,YOLOv4在检测速度和精度相比于YOLOv3均有提升,但是YOLOv4在视频流的检测速度上仍有提升的空间。提出一种融合Camshift和YOLOv4的车辆目标检测算法。算法的流程为:首先计算图像的差异值哈希值,然后利用哈希值来判断当前帧图像与上一帧图像的相似度,当相似度小于阈值,则交给YOLOv4算法进行检测,并将检测结果传给Camshift作为其初始化跟踪窗口;当相似度大于阈值,则由Camshift算法来进行跟踪。最后在实际道路上采集的数据进行算法检测,检测结果表明融合算法的有效性。
-
共1页/2条




