水平起降高超声速飞机气动布局技术研究
气动布局技术是水平起降高超声速飞机研制的核心技术之一。具备水平起降、重复使用、高超声速长时间巡航能力的飞机是未来航空航天飞行器发展的重要方向,飞行速度需跨越亚声速、跨声速、超声速和高超声速,气动布局设计需在全包线范围具有良好的升力、阻力和力矩特性,设计难度极大。本文结合高超声速飞机的需求,针对宽速域气动布局设计存在的问题、难点和关键技术进行分析,为高超声速飞机气动设计提供参考。
前后缘同时可控的乘波体气动修型设计与分析
从超声速气动原理出发,结合流线追踪和几何重构技术,提出了一种前后缘同时可控的乘波体气动修型设计方法。在前缘水平投影为超椭圆和后缘为圆弧的条件下,采用该方法完成了乘波体的气动修型设计并在设计点(Ma=6.0)和接力点(Ma=4.0)开展数值仿真研究。结果表明:在前后缘同时指定的条件下,气动修型设计的乘波体型面过渡光滑,只在出口两侧有很小的高压区,可以很好地保持基准乘波体的波系结构和乘波特性。与基准乘波体相比,气动修型的乘波体具有更高的容积率、升力和预压缩效率,俯仰力矩几乎相等,但是升阻比下降。有粘条件下,设计点时升阻比由2.91降为2.53,接力点时由2.69降为2.32。上述结果符合设计预期,设计方法可行。
高超声速巡航飞行器乘波布局气动设计综述
吸气式高超声速乘波飞行器作为可以高效飞行于临近空间空域的运载器,自概念提出以来一直受到世界各国的高度关注,并吸引着众多学者与机构对此开展研究。本文主要从高超声速飞行器发展动态及乘波式气动布局设计技术两个方面展开分析,前者主要包括超燃冲压发动机的发展历程和主要工业国高超声速项目发展动态;后者主要针对受到世界各国高度重视的乘波式气动布局设计技术,较全面地概述了乘波飞行器气动布局设计方法的最新研究进展,在乘波体设计流程、基准流场构建方法、基准流场求解方法、沿展向乘波布局设计方法和乘波体在高超声速气动布局上的应用等方面进行了详细讨论。根据本文综合分析,乘波式气动布局高超声速飞行器由于在高超声速飞行条件下具有优异的气动性能,仍然是高超声速飞行器一体化布局的重要候选布局形式,而且随...
宽速域乘波构型设计方法研究综述
乘波体是一种典型的高速气动构型,由于高升阻比和均匀的下表面流动等特性使其成为机身/进气道一体化设计的理想构型。随着对乘波体设计方法的不断研究,提高乘波体在非设计条件下的气动性能,实现乘波体的宽速域飞行成为乘波体实用化的一个重要研究方向。将目前的宽速域乘波体设计方法分成变马赫数、多级组合和涡波结合3种类型,并详细介绍了这些方法的设计过程,分析了设计方法的优缺点。
两级融合乘波空天飞机设计与气动特性研究
为了避免两级入轨空天飞机两子级之间存在的激波干扰,提高两级在高速阶段的气动性能,基于锥导乘波理论提出了一种上表面部分融合的两级融合乘波气动布局设计方法,并采用数值模拟方法研究了该布局的气动特性。计算结果表明,乘波体距离基准锥轴线距离的增加会提高两级的升阻比,上表面后缘线二次项系数的增加使两级的最大升阻比提高,但对上面级影响较小,当组合体不变,上面级的最大升阻比随着半展角的增加而减小。下面级在低速飞行时,由于上表面的凹陷,比组合体拥有更高的升力系数,这表明上面级的分离将提高飞行器的升力特性,使下面级拥有更好的着陆性能。
涡波一体乘波飞行器宽速域气动优化设计研究
涡波一体宽速域乘波飞行器通过在低速引入涡效应,显著改善了传统乘波体在低速状态下的升阻特性,具有在未来宽速域空天飞行器总体气动设计当中得到广泛应用的巨大潜力.但是,该设计方法的研究尚不完善,特别是在基准流场建立过程中忽略了三维效应、低速效应、黏性效应以及头部/前缘的钝化效应,因此其高低速气动特性均有优化设计的空间.针对此问题,本文结合高保真RANS求解器、自由变形参数化方法、鲁棒的结构网格变形方法、离散伴随方法以及序列二次规划算法,发展了基于离散伴随的宽速域飞行器气动优化设计方法.基于上述方法,针对涡波一体乘波飞行器开展了兼顾低速与高超声速气动性能的三维整机气动优化设计研究,获得了宽速域优化构型并对其进行了流动机理分析.结果表明,相较于初始构型,宽速域优化构型可以将飞行器高超声速状态下...
高超声速飞行器一体化方法研究
针对高超声速飞行器一体化设计方法现状的分析,阐明了吸气式发动机与乘波体飞行器之间高效的一体化对于高超声速飞行的重要作用,并从理论、原理、设计方法3方面进行介绍。在激波理论方面,通过从直线激波的求解拓展到二次曲面激波的求解,为3维曲面激波的研究提供了帮助;在乘波原理方面,将乘波原理从外流乘波拓展到内流乘波,继而提出1种兼顾内外流需求的双乘波原理,深化了乘波原理的内涵;在设计方法方面,对于基本流场的气动设计问题,提出更加高效的一体化气动反设计方法。综上分析并归纳出准3维内外流一体化乘波理论与方法,从而在现有“准3维”研究体系上,构建并完善了全3维内外流一体化乘波理论与方法,对于复杂3维超声速内外流一体化设计技术的发展具有一定借鉴作用。
多平面升力体外形设计与气动/隐身性能研究
基于乘波体(Waverider Vehicle,WRV)外形利用多平面设计方法生成了一种多平面升力体(Multi-planar Lift-body Vehicle,MLV),针对乘波体和多平面升力体利用仿真方法开展了气动/隐身性能研究。基于层流方程的数值计算发现与乘波体相比,多平面升力体最大升阻比减小10%,最大升阻比减小量较小;纵向焦心和航向压心相对前移,质心系数取0.55时,纵向静稳定裕度较小,小攻角时需进行静不稳定控制,航向静稳定裕度较大,侧滑角未对升阻比和纵/航向静稳定特性产生明显影响。基于物理光学法(Physical Optics,PO)的雷达散射截面(Radar Cross Section,RCS)仿真计算发现多平面升力体可以实现RCS的整体减缩,在俯仰角60~120°,偏航角-10~10°范围内RCS较大,飞行过程中可通过姿态控制避开此区域。研究结果表明:多平面方法生成的多平面升力体具有较好的气动和隐身...
使用深度残差网络的乘波体气动性能预测
本文探究深度学习人工智能技术在飞行器气动外形预测中的应用。以激波装配法乘波体设计为背景,建立气动数据快速生成工具,使用拉丁超立方采样得到海量样本数据。使用深度残差神经网络构建气动外形参数到气动性能数据的代理模型,并与随机森林和双隐层神经网络等普通机器学习模型对比;同时将数据转换为图片,研究基于图片识别的深度学习模型搭建,省略飞行器外形的参数化表达。测试结果说明,深度残差网络作为数据代理模型的精度是随机森林和双隐层神经网络的3倍以上,而基于图片识别的代理模型精度提高有限。研究表明,深度残差网络在乘波体等易于生成大量数据的气动外形的性能预测中效果明显,为深度学习技术在气动外形设计中的应用奠定了基础。
乘波布局高焓激波风洞测热试验研究
以钝化锥导乘波体为研究对象,开展了高焓激波风洞测热试验以及高温化学非平衡气动加热数值验证,对乘波布局滑翔飞行器前缘线和下壁面热流分布特征进行了研究。结果表明:乘波布局飞行器表面热流主要集中于头部驻点及其附近的前缘小范围区域内;在0°~6°的迎角范围内,迎角的改变基本不会对前缘线热流产生太大影响,但会导致下壁面热流明显增加;而侧滑角即使在0°~4°的范围内变化,也将导致前缘线迎风一侧热流明显增加。
-
共1页/10条












