高速开关阀流量非线性分析及补偿控制验证
针对高速开关阀流量控制中存在的死区、饱和区和非线性区问题,在对比脉宽调制(PWM)控制及传统PWM补偿控制的基础上,提出了两种非线性控制方法,基于死区和饱和区分段补偿的PWM控制和脉宽调制-脉频调制(PWM—PFM)控制。基于这两种非线性控制方法,分析高速开关阀的流量特性,并搭建了高速开关阀控制液压缸位置回路,从仿真和实验的角度,对比分析高速开关阀在PWM控制、传统PWM补偿和文中提到的两种非线性控制下的液压缸位置控制特性。研究结果表明:两种非线性控制方法分别从占空比和工作频率的角度对高速开关阀的死区、饱和区和非线性区进行补偿,使高速开关阀在0%~100%占空比范围内流量线性化;在仿真与实验验证中能够有效解决由于流量控制死区和饱和区所造成的液压缸启动和到位过程中误差较大的问题。
基于驱动端电流检测的电磁阀故障诊断研究
提出基于驱动端电流检测的电磁阀故障诊断方法,研究了电磁阀驱动端电流特性及故障阀电流特征分析和识别方法。利用AMEsim软件搭建电磁阀的机、电、液模型,分析其驱动端电流与阀芯位移的关系;采集正常、弹簧断裂、阀芯轻微卡滞和阀芯完全卡死4种状态下的电流信号,分析不同状态的电流特征;针对驱动端电流为直流阶跃信号的特点,选取电流变化率为特征曲线,采用“能量-故障”的诊断方法,利用3层小波包分解对信号进行重构,并提取相应频带能量作为特征向量;利用前馈反向传播(BP)神经网络对提取的特征向量,对电磁换向阀模式识别和故障诊断。实验结果表明:基于“能量-故障”的诊断方法能较好地区分电磁阀的不同状态,并且经过训练的BP神经网络能够准确判别电磁阀的正常、弹簧断裂和阀芯卡死3种状态。
多级液压缸建模及级间缓冲研究
大型起竖装置普遍采用多级液压缸驱动,在缸体初始长度相同的情况下,多级缸较单级缸行程更长,但是其结构也更复杂。为得到多级缸的特性,基于容腔节点法建立了多级缸的运动模型,考虑润滑油膜的信息改进了Lu Gre摩擦力模型,采用迟滞因子的等效阻尼模型改进了接触力模型,完成了多级缸驱动起竖过程的仿真。多级缸换级时作用面积突变,导致压力和速度突变,产生过大的冲击,为减小换级冲击,在缸筒上布置多个缓冲小孔。仿真结果表明:采用缓冲结构后,换级时缸筒同步运动,将压力突变转化为缓变,提前将压力增大至下一级缸筒工作压力,大幅度减小了换级时的速度和加速度波动。
-
共1页/3条





