风切变效应对风力机叶片结构性能的影响分析
利用ANSYS软件的复合材料模块建立某5WM水平轴风力机叶片的铺层模型,通过静力分析和模态分析研究了风切变效应对叶片结构特性的影响。采用Fluent软件对风力机叶片在有无风切变來流的情况下进行数值模拟,将数值模拟所获得的载荷加载到叶片铺层结构上,研究风切变效应对风力机叶片结构特性是否产生影响。结果显示风切变效应使來流风速的均值减小,从而导致所获载荷降低,使叶片的最大应力和最大位移减小;当有预应力干扰时,叶片的模态频率和叶尖变形量都明显提高,这会对叶片的结构特性产生影响。
H-VAWT翼型的抛物线翼型理论及气动特性研究
具有良好气动特性的翼型是风力机高效获能的关键。为提高H型垂直轴风力机(H-VAWT)的获能效率,文章提出了空气重量比拟空气压差建立H-VAWT抛物线对称翼型设计理论。随着常数C增大,抛物线翼型母线的相对厚度先迅速增大到25%后逐渐减小至1%,最大厚度位置从45.8%弦长处逐渐靠近前缘至26.1%弦长处。将选取的抛物线翼型母线等比为与NACA4系列对称翼型厚度相对应的翼型,利用XFOIL进行数值模拟和对比研究。结果表明当C=10.21时,抛物线PWX0007MX-xx系列翼型的气动性能最高,其中分别等比为t/c=9%,t/c=12%,t/c=15%,t/c=18%和t/c=21%时,相较于常用NACA00XX系列同厚度翼型,最大升阻比分别提高了9.45%,5.56%,6.59%,6.59%和2.42%,最大升力系数分别提高了10.59%,9.79%,8.32%,8.65%和7.90%。
凹坑对风力机翼型气动性能的影响
叶片是风力机的主要部件,叶片上的损失也是风力机主要损失来源之一,因此减少叶片损失,提高风力机性能一直是人们研究的课题。文中借助fluent软件对NACA 4412叶片进行数值模拟,计算采用SST k-ω湍流模型,分析了Re=6.8×105时翼型上的流场分布,并将得到的升力系数和阻力系数与实验数据进行了比较,证明了文中算法的可靠性。文中通过对改变凹坑半径大小、位置等方式进行研究,观察其对风力机气动性能的影响。研究结果表明,将凹坑布置在叶片尾缘附近分离涡相对于原型更小,随着凹坑半径的增加,减小流动分离的效果先增加后减小,在半径为10mm时控制效果最好。攻角大于25°时,将半径为10mm的凹坑布置在60%~82%弦长处,可使升力系数增加6.9%。
不同吸气策略对风力机翼型动态失速特性的影响
以NACA0012翼型为研究对象,采用Transition SST湍流模型和Simple算法模拟了高雷诺数下吸气控制对翼型失速特性的影响。设计了4种吸气策略,详细探讨了不同吸气策略对翼型动态失速的影响,并对比其所需能耗。结果表明在相同动量系数下吸气控制对动态失速涡的抑制明显优于喷气控制;与喷气控制相比,采用吸气控制后翼型的平均升力系数可提高13%以上,平均阻力系数可降低80%;当采用开口向下的Sin函数策略时,翼型的等效升阻比最大。
多载荷共同作用对大型风力机关键部件受力影响分析
针对3MW水平轴风力机,为了探究多载荷共同作用对风力机结构部件的影响效果,本文利用GH Bladed对3.2MW风力机进行仿真计算,通过探究气动载荷和地震作用对风力机结构受力特性的影响,证明了在风力机载荷计算中考虑地震作用的必要性。结果表明,当载荷共同作用时,结构载荷随着地震动加速度值增大而增大,说明结构载荷与地震动加速度值之间呈正相关性;相较于稳态风,湍流风变化的波动性会使结构的承受载荷增大。相关研究成果为风力机的结构优化设计和安全运行提供数据参考。
风剪切对风力机叶片气动性能及尾迹形状的影响
风力机通常运行在非定常工况中,其气动性能及尾迹会随着工况的变化而变化.风剪切是风力机长期所处的环境,它会影响到叶片气动载荷、尾迹形状、总体性能等,分析风剪切作用下的叶片气动性能对风力机的设计有重要意义.本文采用一种时间步进自由涡尾迹(free vortex wake,FVW)方法,耦合FVW方法与风剪切模型,计算不同风剪切因子作用下叶片的气动力系数、推力以及风轮后的尾迹形状变化,研究尾迹形状变化对风轮旋转平面诱导速度及风力机叶片气动性能的影响.结果表明在风剪切入流条件下,随着风剪切因子的增大,风力机的气动力系数随时间做周期性波动的幅度加剧,推力的平均值逐渐减小,尾迹倾斜程度增大,尾迹在轮毂下方的倾斜程度更明显;尾迹形状的变化使风轮平面轴向诱导速度因子分布不均匀,同时使风力机的总体性能降低且偏离较大;倾斜尾迹相比...
风力机波形前缘叶片气动性能及流场特性分析
针对波形前缘结构可以延缓失速以及改变叶片流场的特性,采用数值模拟方法研究波形前缘叶片的气动性能以及流场特性,获得波形前缘结构对叶片绕流流场的影响规律。结果表明波形前缘结构可以有效延缓失速的发生,尤其在大攻角下效果更为明显;在前缘波谷处静压变化相较于波峰处更为剧烈,且波峰控制流动效果最佳,波谷处最差。
风力机气动特性的浸入边界法模拟
风力发电机的空气动力学性能是决定风力机安全与效率的最重要因素之一。但由于影响风力机气动性能的参数众多,更加高效精确地模拟风力机气动特性一直是风力机的重要发展方向。本文提出了基于浸入边界法的风力机建模,网格离散,以及数值模拟的统一性框架。利用同伦变形来生成光滑的叶片模型,并且使用仿射变换来处理叶片的渐缩与扭转问题。首先,针对二维翼型的升阻力,检验了算法的数值精度。表明此方法对于阻力的模拟具有非常严格的一阶精度,进而提出采用理查森外推法来精确高效修正升阻力模拟结果。同时,模拟研究了拱曲度以及厚度对二维翼型升阻力的影响。随后,模拟研究了单风力机(包含塔架)在不同尖速比下的功率系数,并对塔架与叶片间的相互气动作用进行了初步分析。最后,模拟研究了双风力机在风场中不同前后间隔距离下的气...
大型风力机叶片气动外形及其运行特性设计优化
大型风力机叶片气动外形设计时不仅应考虑气动外形参数的优化还应该考虑参数优化后的运行特性才能为风力机实际控制提供依据。为此提出一种叶片气动外形及其运行特性设计优化方法。该方法首先建立叶片翼型分布、弦长分布和扭角分布等气动外形参数控制方程基于叶素-动量理论分析各参数变化对风轮功率的影响。在满足额定功率条件下以减小所需额定风速为目标进行优化求解求解过程中考虑初始桨距角的影响。针对优化后的风轮设计了风轮转矩-转速关系曲线分析了风轮运行特性。最后采用计算流体动力学方法佐证了设计结果的正确性。
粗糙度对风力机专用翼型气动性能影响
针对风力机专用翼型FFA-W3-211进行数值模拟,深入系统探讨了粗糙度对该翼型气动性能的影响。采用剪切应力输运k-omega湍流模型进行CFD计算;于翼型表面均匀分布不同粗糙度,求出该翼型敏感粗糙度;同时,研究了在该翼型吸力面和压力面不同位置布置敏感粗糙度时,粗糙带位置对翼型升力系数和阻力系数的影响,分别求出吸力面和压力面的敏感粗糙带位置,与软件XFOIL算出转捩点位置进行对比,分析粗糙度对该翼型气动性能的影响。计算结果对风力机专用翼型的设计与开发具有一定的理论价值。












