基于EMD的灰色模型的疲劳剩余寿命预测方法研究
工程上的振动信号多为非线性非平稳信号,为了利用工程振动信号预测机械产品的疲劳剩余寿命,提出改进的经验模态分解方法对振动信号进行分解,分离故障特征频率到某本征模态函数中,计算全寿命周期各阶段故障特征频率所在本征模态函数的均方根值、峭度等时域特征指标,将其作为刻画机械产品健康状态的退化特征量,形成退化特征量序列,根据经验设定机械产品完全失效对应的退化特征量阈值。用退化特征量序列训练灰色模型,然后用训练好的灰色模型预测退化特征量的变化趋势,判断不同退化特征量用于刻画机械产品退化过程的可行性,估计可用退化特征量达到退化特征量阈值的时间并据此预测机械产品的剩余疲劳寿命。通过6205深沟球轴承全寿命周期振动信号对其进行验证,结果表明,可用的退化特征量结合该方法可以有效地预测小型球轴承的疲劳...
基于Hilbert-Huang变换和自然激励技术的模态参数识别
基于工程结构振动信号的分析与处理识别结构的模态参数,是结构健康监测和损伤诊断的重要手段之一。基于傅里叶分析的信号处理方法对非线性、非稳态信号的处理能力差,传统的模态参数识别方法也存在阻尼比识别精度不高的问题。基于Hilbert-Huang变换和自然激励技术,提出了一种新的模态参数识别方法,首先通过经验模态分解和Hilbert变换提取信号的瞬时特性,进而利用自然激励技术和模态分析的基本理论识别结构的模态频率和模态阻尼比。利用这一方法,对12层钢筋混凝土框架模型振动台试验一测点的加速度记录进行了处理,识别了模态参数,识别结果与其它识别方法及有限元分析结果的对比表明该方法识别模态频率是可靠的,而模态阻尼比的识别虽然较传统的基于傅里叶变换的半功率带宽法有所改进,但识别的精准性仍然难以确认。
经验模态分解和空间滤波在两相流速度测量中的应用
在利用空间滤波和电容传感器测量两相流速度时,需要准确测量电容传感器输出信号的带宽。针对此问题提出一种利用经验模态分解算法来测量传感器带宽的方法。文章首先介绍电容传感器的空间滤波效应和经验模态分解的基本原理,并给出固体速度和电容传感器输出信号带宽之间的关系。然后将经验模态分解和平滑滤波器结合对测量信号进行平滑处理,测量处理后的信号带宽,利用带宽计算得到两相流的速度,最后进行了仿真实验,由此方法得到的测量误差都在2%以内,这比利用小波变换方法得到的相对误差要小得多。仿真实验结果表明该方法能够对两相流速度进行比较准确地测量,这也证明了该方法的可行性与有效性。
EMD端点效应抑制方法
针对经验模态分解(empirical mode decomposition,简称EMD)中的端点效应问题,在研究总结了现有端点效应抑制方法的基础上,提出一种新的方法——基于支持向量机(support vector machine,简称SVM)延拓和窗函数相结合的方法,弥补了SVM延拓依然找不到端点以及窗函数会改变原始信号的缺点。首先,采用SVM对原始信号两端分别进行延拓,将延拓后的数据进行加窗处理(中间加矩形窗,延拓数据加海明窗);然后,利用EMD方法对加窗后的信号进行分解,得到若干个内禀模态函数(intrinsic mode function,简称IMF);最后,将IMF分量的两端延拓部分去掉,以此来达到抑制端点效应的目的。以正交性为量化评价指标,对比分析了不同方法的性能,通过仿真和实验结果表明,该方法可以更好地抑制端点效应的发生。
基于全矢EMD的低速重载轴承复合故障诊断方法
针对低速重载轴承故障信号频率低、单通道情况下复合故障信号不完整,从而导致故障特征提取困难的问题,提出将全矢谱技术与EMD相结合的方法解决低速重载轴承故障诊断问题。首先对时域非平稳信号进行角域重采样转化为角域伪平稳化信号;然后通过EMD进行信号的分解与重构,采用双通道全矢谱技术进行同源信息融合,弥补单通道信号测量的不完整性;最后对重构信号进行频谱分析提取特征参量进行故障识别,并通过试验分析进行了验证。
基于波形平均的经验模态分解端点效应抑制方法
经验模态分解(EMD)作为一种非常灵活的自适应时频分析方法,已广泛用于旋转机械故障诊断中的振动信号分析。但是,经验模态分解存在两个问题:端点效应以及模态混叠。针对EMD中存在的端点效应问题,在积分延拓局部均值分解(IELMD)的基础上,提出了一种利用波形平均来改进IELMD的方法。该方法利用一组相似波形来代替最佳匹配波形与特征波形相匹配,通过对相似波形左边或右边波形取平均得到延拓波形,将其附加在原始信号左端或右端。仿真和应用结果表明,与IELMD方法相比,该方法能够更有效地抑制经验模态分解端点效应。
基于ICEEMDAN和小波阈值的滚动轴承故障特征提取方法
[目的]针对滚动轴承故障信号非线性、非平稳特征导致的故障特征频率难以提取的问题,提出了一种基于改进的带有自适应白噪声的完全集合经验模态分解(ICEEMDAN)和小波阈值降噪的滚动轴承故障特征提取方法。[方法]首先用小波阈值降噪对故障信号进行预处理,然后利用ICEEMDAN对降噪后的信号进行模态分解,产生一系列的固有模态函数(IMF),并根据互相关系数法提取与原信号相关的模态分量,作各层模态分量的包络谱图,提取滚动轴承的故障特征频率。[结果]通过仿真试验与滚动轴承故障试验分析,并将其与集合经验模态分解(EEMD)处理的进行比较,基于ICEEMDAN方法分解后的包络谱幅值更加明显。[结论]本研究提出的方法能精确地提取滚动轴承的故障特征频率。
大型风力发电机组齿轮劣化故障诊断研究
针对大型风力发电机组齿轮出现不同劣化故障时对应频率范围内能量会发生变化的特点,提出了利用经验模式分解(EMD)能量分布作为故障特征向量,灰色相似关联度作为故障模式识别算法的大型风力发电机齿轮劣化故障诊断方法。首先,对采集到的原始信号进行EMD分解,运用相关系数法对获得的本征模式函数(IMF)进行筛选,剔除无意义的IMF分量;然后计算有效IMF的能量及能量比,构造故障特征向量;最后,根据待识别状态特征向量和已知标准状态故障特征向量的灰色相似关联度大小判断齿轮劣化故障类型。通过实验对所提方法进行了验证,结果表明,该方法能有效用于大型风力发电机齿轮常见的劣化故障诊断。
基于EMD与GA-PLS的特征选择算法及应用
针对振动信号非平稳性和特征优化选择的问题,提出一种基于EMD和GA-PLS的特征选择算法。在该算法中,首先,采用EMD方法将振动信号分解成多个固有模态函数(Intrinsic Mode Function,IMF),对IMF分量建立自回归(AR)模型,以AR模型系数和残差作为初始特征向量,然后,遗传算法与偏最小二乘法相结合(GA-PLS)的算法对初始特征向量进行筛选得到新的特征向量,最后,以新的特征向量为输入,建立分类器,用来识别手动换向阀的工作状态和判断故障类型。实验结果表明,采用该特征选择算法能准确地选择出特征,并能应用于手动换向阀的故障诊断。
基于经验模态分解的超声波管外测压信号去噪
在超声波管外测压中,回波信号往往受到噪声的干扰,所以在提取信号特征时,需对回波信号进行去噪。提出了一种基于经验模态分解(EMD)的超声波信号去噪方法,首先利用EMD求出信号的本征模态函数(IMF),然后通过对比分析,利用反映信号主要特征的模态分量对信号进行重构以实现去噪。实验结果表明,该方法能够有效地去除噪声,提高超声回波信号的信噪比。












