碧波液压网 欢迎你,游客。 登录 注册

柱塞泵滑靴磨损信号随机森林算法故障诊断

作者: 张月平 田伟华 刘艳红 来源:机械设计与制造 日期: 2025-03-12 人气:60
柱塞泵滑靴磨损信号随机森林算法故障诊断
为了提高低负载下柱塞泵滑靴磨损故障状态诊断精度,提出基于随机森林算法的柱塞泵滑靴磨损故障状态识别方法。重点分析了低负载条件下各类柱塞泵滑靴故障信号的频域特征值,构建了特征数据库。验证了上述方法的适应性,并测试了柱塞泵不同程度松靴故障的诊断情况。研究结果表明滑靴磨损后频域表现出明显的波动性,袋外错误率和决策树数量呈现反比变化规律,基本都在0.05附近,将决策树最优棵数n设定在400。以随机森林算法诊断特征数据库时,在250组样本中只发生了1组误识别情况,达到了98.75%的识别准确度。随机森林方法训练时间、训练准确度与测试准确度都比其它各算法更优。松靴故障诊断结果获得了高于99.5%的总体诊断准确度。采用随机森林方法柱塞泵磨损故障状态诊断表现出优异适应性,能够对柱塞泵各故障状态进行准确诊断。

轴承故障高敏感特征提取与随机森林智能识别

作者: 李冬 来源:机械设计与制造 日期: 2025-01-27 人气:123
轴承故障高敏感特征提取与随机森林智能识别
为了提高轴承故障识别正确率,提出了基于多重分形理论的特征提取方法和改进随机森林的模式识别方法。介绍了多重分形去趋势波动理论,初选了4个多重分形参数作为特征参数;将参数两两组合,使用K均值聚类法进行聚类,依据类内聚集度和类间距离优选了最佳组合作为特征向量。以随机森林算法为基础,提出了舍弃策略和话语权策略进行改进。舍弃策略通过舍弃分类正确率靠后的决策树提高随机森林平均正确率,减小森林的泛化误差;话语权策略通过提高优秀决策树的话语权,放弃了传统算法中的绝对民主,两个改进策略提高了算法模式识别正确率。经实验验证,改进随机森林算法对故障识别正确率为100%,而传统算法识别正确率仅为93.1%,证明了算法改进策略的有效性。

基于随机森林算法的非定常气动力建模研究

作者: 徐旺丁 张兵 王华毕 来源:计算力学学报 日期: 2024-11-12 人气:56
基于随机森林算法的非定常气动力建模研究
针对现有的非定常气动力建模方法对气动弹性预测的准确性和效率问题,将随机森林算法引入非定常气动力建模研究领域,构建了基于随机森林算法的非定常气动力降阶模型。将所得模型用于预测气动弹性,选择二维NACA0012翼型进行颤振边界的预测,选用NACA64A010翼型预测LCO特性,并说明了该降阶模型建模的详细过程,将其计算结果与CFD/CSD耦合计算结果及试验结果进行了对比。研究结果表明,该模型可行、高效且精确,可以快速准确地预测飞行器气动弹性特性。

基于组合矩和随机森林的转子轴心轨迹识别

作者: 蔡文伟 张景润 李伟光 赵学智 郭明军 郭建文 孙振忠 李国成 来源:机床与液压 日期: 2021-08-27 人气:160
基于组合矩和随机森林的转子轴心轨迹识别
针对大型旋转机械难以获得大量故障样本和不变矩识别率低的问题,提出基于组合矩和随机森林模型的转子轴心轨迹识别方法。采用实测的轴心轨迹作为样本,采用Sobel算子提取轴心轨迹的轮廓,基于轮廓的形状几何特征和不变矩构造组合矩。将不变矩和组合矩作为随机森林模型的输入进行分类,证明了组合矩的分类准确率最高。对随机森林、支持向量机和BP神经网络的分类效果进行了对比,结果表明:随机森林的分类准确率要高于支持向量机和BP神经网络,并且识别时间较短,是诊断旋转机械故障的一种新方法。

基于随机森林算法的汽车轴承故障检测

作者: 朱明新 尚凯 杨兴园 周鹏 张亚岐 来源:机床与液压 日期: 2021-08-25 人气:177
基于随机森林算法的汽车轴承故障检测
针对传统机器学习算法受输入变量限制、且易出现过学习或欠学习,提出不受输入变量限制且存在大量数据缺失时有很好保持精确性的随机森林算法对汽车轴承故障进行检测。对采集到样本数据进行滤波处理,抑制信号中噪声;利用随机森林算法对采集到的时域信号进行分类标识,确定包含故障信息的信号序列;再将信号转换到频域,利用随机森林算法对频域内信号进行检测,确定出故障频率;最后采集试验数据对所提及算法进行验证,结果表明:相比于传统的机器学习算法,随机森林算法响应速度快,且准确率高。
    共1页/5条