滑阀间隙中方形微米颗粒的旋转现象
将滑阀微米配合间隙简化为二维模型,敏感颗粒外形近似为方形.运用COMSOL软件中流固耦合模块的任意拉格朗日-欧拉方法,对方形微米颗粒在滑阀间隙内的运动特征进行仿真研究.发现了颗粒在滑阀间隙中的旋转现象,此现象从微观层面科学地解释了非圆球形颗粒物诱发滑阀卡滞的机理.流固耦合计算显示,微米颗粒跟随油液流动的同时,颗粒在间隙中产生旋转运动,同时颗粒中心的运动轨迹有上下波动;均压槽中颗粒中心的运动轨迹呈抛物线状,径向位移的最大值约为均压槽深度的1/4,随着方形颗粒尺寸的增大,其沿径向位移的最大值呈减小趋势.
T型航空液压管路的流固耦合振动特性分析
分支型液压管路在复杂工况条件下极易发生泄漏和断裂的事故。针对T型航空液压管路分支结合部由泵的流体压力脉动和外部机械激励产生的耦合振动问题,提出使用有限元仿真与流固耦合振动试验结合的方法进行研究。首先验证有限元方法求解管路振动问题的可行性,然后对T型管路进行模态分析和谐响应分析,探讨流体压力及管路固体弹性模量对管路振动的影响。结果表明:随着流体压力的增大,管路低阶模态受影响明显;随着弹性模量的增大,管路高阶模态受影响明显。在外力激振环境下,前3阶模态容易被激发。
基于流固耦合的O型圈高压密封研究
针对液压打桩锤冲击引起的管路泄漏问题,对管路中的O型圈进行流固耦合仿真分析。先对管路进行建模,进行体积抽取得到流体域,再用非结构化网格对流体域进行划分。对O型圈施加约束后,导入流体域耦合面的压力数据并进行仿真,求出O型圈耦合面上的凡弥赛思应力和弹性应变,以判断各结构参数对管路密封性的影响。研究结果表明:通过增加压缩率,O型圈的最大应力减少了22.45%,最小应力减少了97.32%,最大应变减少了8.38%,最小应变减少了97.52%;通过增加管壁厚度,O型圈受到的的最大应力减少了4.62%,最小应力减少了33.85%,最大应变减少了17.90%,最小应变减少了25.55%。因此,在高压工况下,可以通过增加O型圈压缩率和管壁厚度提升管路密封性。
基于LMS软件平台的核电反应堆落棒流固耦合仿真分析
核电反应堆控制棒落棒时间对于核电站的安全至关重要.在以往的研究中,均基于经验或试验的方法,研究内容有限,且不容易寻找存在的影响因素.文中基于LMS的Virtual.Lab Motion多体动力学仿真平台和Imagine.Lab AMESim系统仿真平台,进行核电厂反应堆控制棒驱动线和流体阻力的流固耦合建模仿真分析.通过分析,可以得到落棒过程中存在的碰撞、摩擦、控制棒的变形,同时可以得到流体的黏度、初始压力、温度、阻尼孔大小等,综合分析这些因素对落棒时间的影响.
基于ANSYS高压环境柱塞副环形缝隙泄漏分析
针对0号轻质柴油在喷油泵高压环境下柱塞副缝隙间的泄漏问题,采用分段建立数学模型的方法,结合ANSYS与Fluent软件对喷油泵高压腔内的流体进行流场压力分析并且对高压喷油泵柱塞副间隙泄漏进行流固耦合计算分析,避免运算过程中计算量大、运算时间长等问题,得到喷油腔内压力变化情况及柱塞副形变量与其缝隙压力情况等结果。
基于流固耦合的液压阀块数值模拟分析
液压阀块是集成式液压系统的核心部件,阀块内孔道损伤对液压系统机能影响重大,导致油液泄漏,甚至会影响阀块内其他油路。为分析自卸车举升系统液压阀块流固耦合情况,采用Solidworks软件建立流道及阀体三维几何模型,采用FLUENT软件对液压阀块内部进油路流场进行定常数值计算。采用ANSYS Workbench软件对液压阀块流道流场和液压阀块阀体进行单向流固耦合计算。重点分析了流道压力损失的位置,比较两种不同相交方式的流道对阀体的影响。结果表明:液流流过直角转弯结构后流速变化和压力损失较大,提出了流道的优化方案,减少了直角转弯处阀体应力集中现象,提高了自卸车举升系统液压阀块的可靠性。
轴向基础振动对缠绕式液压胶管沿程压力衰减特性影响
液压胶管在硬岩掘进机(TBM)液压系统中大量使用,管内流体动力学行为影响系统的安全可靠性。为了得到振动环境下管内流体压力沿管长方向的衰减特性,基于复合材料经典层合板理论和流固耦合理论,建立缠绕式胶管轴向振动的流固耦合模型,得到沿胶管管长方向压力损失的数值计算公式,通过仿真与实验研究振动参数、结构参数和流体参数对压力衰减特性的影响,研究结果表明:沿程压力损失的幅值随着基础振动振幅的增加呈线性增长,随振动频率的增加而增加;随胶管管长和管径的增加,沿程损失波动的程度减弱;随流速的增加,沿程压力损失的波动比减小,流体黏度对沿程压力损失波动的影响较小。研究结果可为TBM管系设计和抗振设计提供理论依据。
强振动环境下缠绕式液压胶管流固耦合特性
针对TBM破岩过程产生基础振动对液压胶管内流体动态特性影响,根据层合板理论建立缠绕式液压胶管振动梁模型,并结合轴向流固耦合模型建立胶管轴向振动动力学模型。运用特征线法求解该数学模型,研究基础振动参数和胶管结构参数对流体响应特性影响,发现胶管出口压力波动幅值随基础振动振幅呈线性增加的趋势,随振动频率增加,在40Hz左右达到最大,此时振动频率接近系统固有频率;胶管出口压力峰值随液压胶管长度增加而减小,胶管内径在8mm到30mm变化时,其先增大后减小,随泊松比增大而增大。研究结果表明振动沿胶管轴向分量加强了流体与胶管互动效应,可为TBM液压管系设计和抗振提供理论依据。
基于动网格的液压滑阀流固耦合分析
采用基于动网格的流固耦合分析方法,建立了液压滑阀开启过程的三维动态数值分析模型,计算阀芯在驱动力、流体力和弹簧力共同作用下的运动分布、应力变化和形变。结果表明:提供一种分析液压滑阀开启过程的数值仿真方法,阀芯在开启完毕达到稳态后仍有小幅振动;阀芯的径向形变主要发生在阀杆上,且变形量随时间产生小幅波动;阀芯由于油液的冲击在入口处产生较大变形并在台肩与阀杆连接处产生应力集中,采用CFD方法得到的液压滑阀运动分布、应力变化、形变和理论值的误差在可以接受的范围内,证明了仿真的可靠性。
基于COMSOL的滑阀流固耦合共轭传热仿真研究
液压滑阀在工作过程中常常因黏性加热而出现阀芯热卡紧现象,基于流固耦合共轭传热方法。运用COMSOL软件对滑阀内的热一流一固多物理耦合场进行数值计算。结果表明:高温主要集中在速度梯度较大的区域以及受高速油液冲刷的节流槽壁面,由此产生的阀芯节流槽区域径向不均匀环状凸起变形可能直接导致阀芯卡紧;阀芯最大径向热变形量可达1.31μm,位于节流槽矩形工作边处;黏温特性对滑阀内的黏性加热效应具有消极的影响,含气泡油液却与此相反,导热率与温度的线性关系对滑阀阀芯径向热变形也具有消极的影响;考虑以上因素并不改变滑阀内的温度场分布与热变形特征,而是使计算结果更加符合实际工况。












