基于MIGA-VMD和t-SNE的轴承故障诊断方法
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
7.31 MB
文件类型
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对从汽轮机轴承的非线性、非平稳振动信号中提取故障特征困难而导致诊断识别率低的问题,提出一种基于MIGA-VMD和排列熵、t-SNE的特征提取方法。变分模态分解(VMD)在轴承故障诊断中的分解效果很大程度上取决于分解个数和惩罚参数的选取。为实现VMD相关参数的最优选择,采用多岛遗传算法(MIGA)对VMD参数进行优化。利用参数优化的VMD将轴承原始振动信号分解为若干本征模态分量,计算与原始信号相关性较高的部分模态分量的排列熵构成故障特征,利用t-SNE方法进行降维得到低维特征向量并将其作为支持向量机分类器的输入,实现故障类型的诊断。将该方法应用到轴承故障诊断中并与EMD+排列熵+t-SNE、EEMD+排列熵+t-SNE、LMD+排列熵+t-SNE、传统VMD+排列熵+t-SNE四种特征提取方法进行对比。实验结果表明该方法能更准确地提取轴承的故障特征,有效实现轴承的故障诊断。相关论文
- 2023-06-20蓄能器在棒材矫直机液压系统中的应用
- 2022-08-09基于粗糙集和支持向量机的航空液压泵故障诊断
- 2018-11-06针对三种压力阀的比较研究
- 2025-01-16KW铸造造型线压实缸改造
- 2019-12-23喷浆机泵送结构的液压系统研究



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。