全动力制动系统蓄能器充液阀的稳健设计
蓄能式全动力制动系统充液阀的设计目标是提高系统的充液效率、减轻对车辆其他系统的影响并降低充液阀的制造成本。根据系统原理建立了可用于充液阀稳健设计及其充液特性分析的动态数学模型,试验验证了仿真模型的正确性。在分析系统充液特性主要影响因素的基础上,确定了充液阀的设计变量及不确定因素。对充液阀进行基于充液时间最短的稳健设计结果表明,合理选择设计参数可降低加工精度,提高充液效率及性能稳健性。
全动力液压制动系统制动阀芯结构特性分析
制动阀作为双回路全动力液压制动系统的关键元件,两阀芯直径的尺寸配合直接影响到工程车辆的制动性能,因此阀芯直径尺寸大小是设计制动阀的关键。以双回路全动力液压制动系统中最常见的串联调节式液压制动阀为例,在掌握其工作原理的基础上,采用MATLAB/Simulink对全动力液压制动系统进行建模仿真。改变上、下阀芯直径大小得出了不同的制动力响应结果,并将其进行研究和对比;结合阀芯内力需求和前、后轮制动力分配要求,对双回路全动力液压制动系统中的制动阀进行结构特性分析。得出阀芯的设计特点为上回路直径大于下回路直径,制动阀阀芯结构设计特点分析为双回路全动力液压制动系统及制动阀提供了设计依据。
轮式车辆制动系统双液动力转换器的动态特性
全动力液压制动系统与传统制动系统相比具有很多优点。因普通液压油无法替代使钳盘式制动器工作的制动液,设计了既能保持全动力液压制动系统优点,又能降低整机制造成本。采用仿真与试验相结合的方法,对设计研制的双液动力转换器进行动态特性分析,掌握了转换器主要结构参数对制动压力响应特性的影响规律。研究结果表明,双液动力转换器能够满足轮式工程车辆对制动系统的要求。
复合储能式混合动力车辆系统研究
为解决工程车辆使用过程中产生的环境污染和能源消耗问题,提出了一种新型的复合储能式混合动力系统,并对主要元件进行参数匹配选择。利用MATLAB/Simulink软件建立车辆和液压仿真模型,分析系统节能效果。结果表明,系统具有良好的节能效果,最低节油率达到20%左右。
工程车辆全动力制动系统液压管路建模与仿真
针对全动力液压制动系统管路布置对整车制动性能影响较大的问题,用键合图方法建立了全液压制动系统液压管路的数学模型,在建模过程中考虑了液压管路的动态摩擦阻力.应用Matlab软件中的动态仿真工具Simulink软件包对液压管路的动态特性进行了仿真分析,为研究和减小管路布置对全液压制动系统制动性能的影响提供了参考.
工程车辆全液压制动系统充液系统的研究应用
介绍了全动力液压制动系统的工作原理,分析了充液系统各元件选型、设计要点及匹配计算。全液压制动系统进行合理改进后应用到平地机上,性能更佳,功率消耗小,制动平稳可靠,操纵轻便省力,为工程车辆全液压制动系统的应用提供参考。
液压混合动力车辆联合制动系统控制
针对液压混合动力车辆制动过程能量回收率较低的问题,搭建液压混合动力装载机联合制动系统的Simulink仿真模型,并采用自适应神经模糊控制(ANFIS)建立联合制动系统的控制器,然后对仿真模型进行仿真分析,结果表明联合制动系统的控制性能和能量回收率均得到提升。利用dSPACE进行硬件在环试验,所得试验与仿真的结果基本一致,验证了基于自适应神经模糊控制的优化切实有效,为相关控制器的设计提供了参考。
车辆制动能量回收模拟系统设计与仿真
目前国内液压节能汽车试验平台结构复杂, 管路繁多, 液压泵/ 马达、飞轮等的动态参数不确定, 无法满足多种工况下的实验配合问题.新型车辆制动能量回收模拟系统, 使用电液比例控制系统代替传统的液压泵/ 马达, 可实现能量回收过程多种复杂工况的动态模拟.设计车辆制动能量回收模拟系统, 运用MATLAB/ Simulink 软件, 建立了车辆制动能量回收模拟系统的仿真模型, 通过仿真得到了该模拟系统在充、放液过程中的动态特性, 并设计了试验台架, 为后续车辆制动能量回收系统的实验研究提供了平台.
工程车辆蓄能式液压制动系统充液特性
在对新型蓄能器充液阀结构与性能分析的基础上建立了制动系统充液特性动态分析数学模型分析了充液过程中充液阀的动态特性及功率消耗得到了系统参数及充液阀结构参数对充液特性的影响规律.实验验证了仿真模型的正确性.
全动力液压制动系统的动态模拟与实验
在对串联式液压制动阀结构与性能分析的基础上,建立了全动力液压制动系统动态数学模型,并就制动阀结构参数对系统动态性能的影响进行了仿真分析.通过系统动态响应特性台架实验,验证了仿真模型,得出了各种制动工况对系统响应特性的影响规律.经工业性应用,设计研制的工程车辆全动力制动系统性能满足ISO3450标准要求、












