面向非结构化坡面的四足机器人位姿优化方法
为了提升四足机器人应对非结构化坡面的能力,提出一种面向非结构化坡面的位姿优化方法。根据四足机器人足端的位置估计了不规则坡面的角度和前进方向的角度并建立虚拟坡面;接着分析四足机器人在坡面行走时的稳定裕度和足端最远可达距离和最大跨越高度等坡面运动性能;然后利用稳定裕度、足端最远可达距离和最大跨越高度以及倾覆率等坡面运动性能通过加权构建单目标函数,并用海洋捕食者算法求解得到位姿参数的最优值,对四足机器人进行控制。最终通过MATLAB和Webots联合仿真,验证了所提位姿优化方法可以使四足机器人在应对不同场景的坡面时提升相应的能力,增强了四足机器人的非结构化坡面应对能力。
基于Trot步态的液压四足机器人关节驱动力仿真分析
采用液压能代替传统的电能驱动机器人的功率密度高、控制算法简单,输出转矩较大,负载能力强。以液压四足机器人为参考对象,利用SolidWorks建立四足机器人的三维模型,并利用MATLAB,ADAMS搭建联合仿真平台,采用联合仿真的方法研究其在对角(Trot)步态行走过程中步态参数对液压四足机器人关节驱动力的影响,通过参数优化使得关节驱动力对液压系统的影响最小,从而能够实现四足机器人的稳定行走,同时,也为四足机器人液压系统设计提供了理论分析依据。
基于扩展雅可比矩阵的冗余液压驱动四足机器人运动控制
针对冗余液压驱动四足机器人运动学逆解问题,提出一种基于扩展雅可比矩阵的冗余液压驱动四足机器人运动控制方法.该方法既能解决冗余自由度带来的逆解多解问题,还能使机器人足端入地角度满足摩擦锥要求避免足端滑动.首先,规划机器人足端轨迹得到机器人足端速度,在分析机器人足端入地角度对机器人运动性能影响的基础上,结合机器人腿部结构几何关系,建立扩展雅可比矩阵,确立机器人关节角度速度和足端速度的映射关系,即得到机器人关节角度的解.然后,在对角步态下,通过仿真对传统的梯度投影法和提出的扩展雅可比矩阵法进行对比,理论分析及仿真表明传统的梯度投影法存在误差累积,且在实时性上不如扩展雅可比矩阵法.最后,实验验证了基于扩展雅可比矩阵逆运动学分析方法的可行性和有效性.
液压四足机器人的跳跃步态控制
针对液压四足机器人的跳跃步态控制问题,依据弹簧负载倒立摆(spring-loaded inverted pendulum,SLIP)模型理论对四足机器人跳跃过程进行分析,采用解耦的控制思想,将运动控制分为水平运动控制、竖直运动控制和机身姿态控制,通过在腾空相对触地角的调整实现水平方向上速度的控制,在触地相进行能量补偿与机身俯仰姿态调整,完成对跳跃步态的控制,并在仿真软件中建立虚拟样机进行仿真分析,得出跳跃运动过程中的运动速度、跳跃高度和足端弹簧所受力的大小。最后在液压四足机器人平台上进行验证,证明了该方法可以实现四足机器人稳定的周期跳跃运动。
电动力液压驱动四足双臂机器人的设计与实现
针对定基座机器人在复杂环境下作业能力不足的问题,研制出电动力液压四足双臂机器人,将浮动基座与双臂系统的优势有机结合,能够代替人员完成复杂环境下应急处置、工程作业等任务。详细阐述了四足双臂机器人的机械结构、机载电液动力系统、分布式控制系统以及仿真与操作训练平台的设计与实现。提出基于全身虚拟模型的足底力分配方法与足臂协调运动规划方法,实现了躯干浮动基座与双臂系统的联动,大大提升了机器人的作业能力和效率。通过搭建的仿真与操作训练平台完成单臂作业以及双臂协同作业的仿真,验证了所提出控制方法的有效性,并对机器人操作员进行操作训练。在实际样机实验中,测试了单臂抓取以及双臂协同抓取的能力,证明了四足双臂机器人能够满足复杂环境下移动作业的需求。
基于复杂地形的四足机器人路径规划算法研究
针对四足机器人在复杂环境中摆动腿路径点规划不准确的问题,提出一种基于摆动腿路径规划的样条优化算法。该算法运用零力矩点(ZMP)稳定性准则,在对机器人COG轨迹进行规划的基础上,对机器人摆动腿足端轨迹路径点进行优化计算,并利用ADAMS建立其仿真模型用于计算机仿真。结果表明:该算法不仅能保证四足机器人安全避障,且能实现在复杂地形条件下平稳行走,验证了该算法的准确性和鲁棒性。
液压四足机器人元件与液压系统研究现状与发展趋势
针对液压四足机器人结构布局混乱、能量损失大及控制策略复杂等问题,从机器人整机、液压系统和控制策略3个角度分析了液压四足机器人的研究现状。首先,对各团队的机器人进行介绍,指出国内外的技术差距;然后,从动力来源、系统类型、液压回路和伺服执行元件4个方面对液压系统的主要2大构成分别阐述,着重介绍了以节能为目的的阀控系统和集成化、一体化的伺服执行器;接着概述了主流的几种控制策略,并分析各自的优缺点;最后,指出液压四足机器人的发展方向将集中在高速高压化、轻量化、节能降噪以及先进的控制算法,以实现液压四足机器人的高动态性能和行业应用。
基于足端轨迹规划的四足机器人运动学分析与仿真
为了减少四足机器人在行走过程对地面的冲击,提出一种改进动静步态的五次多项式的足端轨迹规划。推导了改进五次多项式的数学公式,利用机器人运动学知识计算机器人的运动学逆解。根据数学推导,分析机器人足端速度和加速度的理论曲线。利用ADAMS对机器人在三角步态和对角步态下进行运动仿真,对比了足端轨迹的理论结果和仿真结果,分析了仿真情况下机器人质心变化和RPY角变化。理论分析和仿真结果一致,验证了改进足端轨迹的正确性。
液压驱动单元力控系统建模及其性能影响因素研究
以四足机器人关节驱动器一液压驱动单元为研究对象,依据液压驱动单元的结构组成原理,采用机理建模的方法,建立其力控系统数学模型,该模型包含了基于辨识得到的伺服阀三阶传递函数、伺服阀的压力.流量非线性环节、伺服缸两腔容积变化因素等。建立液压驱动单元力控系统框图,并利用MATLAB/Simulink平台建立其仿真模型,采用实验测试与仿真分析相结合的方法,研究不同工作参数和不同给定信号下的液压驱动单元力控性能。研究结果表明:比例增益、供油压力、力阶跃量及正弦频率等参数均会对液压驱动单元的力控性能产生影响,该研究工作对四足机器人各关节高性能的力控方法研究提供了理论和实验基础。
基于ADAMS的四足仿生机器人单腿结构设计
利用ADAMS软件虚拟样机技术,设计了液压驱动的四足仿生机器人单腿机械结构。通过分析四足哺乳类动物身体结构及运动特性,设计了仿生机器人的机械机构,确定了机器人腿部自由度配置,建立了仿真模型。根据动物的实际运动步态,规划并设计了静步态及对角小跑两种步态,进行了逆动力学仿真,得到关节等关键部位输出数据。在仿真实验的基础上,设计了液压作动器的关键参数及四足仿生机器人单腿机械结构。












