碧波液压网 欢迎你,游客。 登录 注册

农业机械设备液压元件故障诊断系统设计与应用

作者: 曹智军 来源:农机化研究 日期: 2025-01-16 人气:66
为进一步提升农业机械设备液压元件的故障识别与诊断水平,通过理解多功能收获机的液压元件故障机理,将故障机理的理论模型与BP核心算法相融合,从硬件平台和软件运行控制两大方面进行故障诊断系统设计。测试试验表明设置正确的故障编码并给出较为涵盖齐全的故障系统知识库,通过液压元件的故障现象,可得知该元件的故障名称及故障处理方案,在完善多功能收获机液压元件故障诊断手段的同时,可为农机设备维修人员迅速准确找出故障位置提供便利。该设计可作为故障专家开发系统的有效组成部分,具有一定的推广价值。

多子阵声信号融合下轴向柱塞泵故障智能识别方法

作者: 王长林 孙俊杰 钟永腾 来源:制造技术与机床 日期: 2025-03-12 人气:193
多子阵声信号融合下轴向柱塞泵故障智能识别方法
利用非接触式声阵列构造了多个子阵,建立了轴向柱塞泵故障噪声信号监测模型,并基于卷积神经网络-支持向量机(convolutional neural network-support vector machine,CNN-SVM)组合模型提出了故障智能识别方法。首先,运用子阵列平移的信号模型进行信号滤波,结合小波变换(continuous wavelet transform,CWT)生成时频图样本,通过多子阵合成RGB图片作为故障声信号样本;其次,用SVM替代Softmax分类器,建立了基于CNN-SVM的多子阵声信号融合的故障故障识别模型;最后,设计了柱塞故障、配流盘故障、斜盘故障和回程盘故障等4种故障并进行了实验验证。结果表明,所提方法在运行噪声环境下的分类准确率达到了97.5%,相较与单通道时频样本,其准确率提高了1.1%。

轴承故障高敏感特征提取与随机森林智能识别

作者: 李冬 来源:机械设计与制造 日期: 2025-01-27 人气:123
轴承故障高敏感特征提取与随机森林智能识别
为了提高轴承故障识别正确率,提出了基于多重分形理论的特征提取方法和改进随机森林的模式识别方法。介绍了多重分形去趋势波动理论,初选了4个多重分形参数作为特征参数;将参数两两组合,使用K均值聚类法进行聚类,依据类内聚集度和类间距离优选了最佳组合作为特征向量。以随机森林算法为基础,提出了舍弃策略和话语权策略进行改进。舍弃策略通过舍弃分类正确率靠后的决策树提高随机森林平均正确率,减小森林的泛化误差;话语权策略通过提高优秀决策树的话语权,放弃了传统算法中的绝对民主,两个改进策略提高了算法模式识别正确率。经实验验证,改进随机森林算法对故障识别正确率为100%,而传统算法识别正确率仅为93.1%,证明了算法改进策略的有效性。

基于VMD能量熵和HMM的行星齿轮箱故障识别方法

作者: 陈明鑫 庞新宇 吕凯波 杨兆建 来源:机床与液压 日期: 2021-08-30 人气:159
基于VMD能量熵和HMM的行星齿轮箱故障识别方法
针对行星齿轮箱振动信号成分复杂、非平稳、非线性的特点,提出一种基于变分模态分解(VMD)能量熵和隐马尔科夫模型(HMM)的故障识别方法。利用VMD算法对不同故障类型的齿轮振动信号进行分解,提取经信号分解得到的各阶本征模态函数(IMF)的能量熵。基于不同故障类型的各IMF分量能量熵在分布上的各异性,将其集合作为故障识别的特征向量。利用不同故障类型的特征向量组成的训练集训练HMM,计算最大对数似然概率值,用于判断测试样本的故障类型。利用该方法对一定转速下行星轮的3种故障进行识别,结果表明:当载荷不同时,它对行星轮齿根裂纹、断齿和齿面磨损3种故障的平均识别率可达到95.83%。

基于模糊熵与CS-ELM的供输弹系统早期故障识别

作者: 韩慧苗 许昕 潘宏侠 李磊磊 来源:机床与液压 日期: 2021-07-29 人气:179
基于模糊熵与CS-ELM的供输弹系统早期故障识别
针对供输弹系统早期采集的信号中成分复杂,故障特征难以提取和识别的问题,提出一种基于模糊熵与布谷鸟改进的极限学习机(CS-ELM)的供输弹系统早期故障预示方法。运用改进的可调品质因子小波变换对信号进行滤波降噪,提取各子带信号的模糊熵特征;选取模糊熵值较大的5个子带进行重构,完成降噪并将其模糊熵组成特征向量;运用CS-ELM对所提取的特征向量进行早期故障预示并与ELM的诊断结果进行对比。试验结果验证了该方法的有效性,其预示准确率达90.7%。

基于Triplet loss的电磁阀故障识别方法

作者: 张文啸 孟国香 叶骞 来源:液压与气动 日期: 2021-07-19 人气:77
基于Triplet loss的电磁阀故障识别方法
针对电磁阀故障识别对专家知识依赖过高,现有智能诊断系统多需要人为提取信号特征等问题,以某型号电磁阀作为研究对象,人为设置故障工况,采集各种工况下的多通道运行数据,利用TensorFlow平台搭建了对该电磁阀的端对端故障识别模型。此外,在此基础上又提出了基于Triplet loss函数的改进模型,并进行了验证测试。结果表明,基于Triplet loss的故障识别模型除具有更高的识别准确率之外,对于在不同动作频率下工作的电磁阀信号有更好的泛化能力。

基于ALIF和ISOMAP的机械设备故障识别方法研究

作者: 陈向俊 傅军平 于晓 陈栋栋 李黎苹 胡炳涛 冯毅雄 来源:机床与液压 日期: 2021-07-09 人气:160
基于ALIF和ISOMAP的机械设备故障识别方法研究
滚动轴承作为机械设备的重要部件,对机械设备的稳定运行起着重要的作用。滚动轴承的故障信号往往是多种信号的叠加,有必要对采集到的振动信号进行模式分解,进而基于模式识别方法实现对滚动轴承不同故障模式的分类识别。提出一种基于自适应局部迭代滤波(ALIF)和等距特征映射(ISOMAP)的机械设备故障分类识别方法。利用ALIF对滚动轴承的故障信号进行模式分解;对选定的模式分量提取多个统计学特征;最后利用ISOMAP对高维特征信号进行降维处理,实现对滚

基于主元分析与KNN算法的旋转机械故障识别方法

作者: 张金萍 白广彬 来源:机械设计与制造 日期: 2021-05-06 人气:139
基于主元分析与KNN算法的旋转机械故障识别方法
针对旋转机械高维故障数据难以被准确辨识的情况,提出了一种基于主元分析(principal component analysis,PCA)和K近邻(K-nearest neighbour,KNN)算法的旋转机械故障识别方法。合理选取出各状态信号的时域、频域特征指标构造成高维特征空间,输入给主元分析算法进行降维处理,提取出低维敏感特征,将约简后的状态样本输入给KNN算法进行故障识别。滚动轴承和转子的实验结果表明,该方法能够很好的约简高维故障样本特征,在实现样本数据可视化的同时准确识别出各故障样本。与传统方法相比,该方法具有结构简单、识别率高等优点,对机械故障诊断研究具有一定的工程意义。

基于支持向量机的往复压缩机示功图识别研究

作者: 江志农 张进杰 敖静晖 来源:流体机械 日期: 2020-08-27 人气:72
基于支持向量机的往复压缩机示功图识别研究
提出了一种基于支持向量机的往复压缩机示功图识别方法。根据不同故障在示功图上反映的不同特征,进行故障特征提取。针对实际故障发生情况,构造了基于决策树的多分类支持向量机故障识别模型。使用不同核函数对计算机模拟与往复压缩机试验台实测的故障示功图进行识别,结果表明,该方法能有效应用于往复压缩机示功图故障识别。

往复压缩机气阀故障模拟实验与诊断研究

作者: 毕文阳 江志农 刘锦南 来源:流体机械 日期: 2020-08-26 人气:208
往复压缩机气阀故障模拟实验与诊断研究
气阀是往复压缩机最易发生故障的部件。本文在分析气阀故障原理的基础上,首次在大型往复压缩机实验平台上对吸气阀、排气阀进行了一系列破坏性实验,对现场机组气阀的各类故障情况进行了真实模拟,最大限度地保证采集到的振动及温度信号与实际机组的故障信号相符合,利用BH5OOOR在线监测诊断系统对故障特征进行了识别和分析,结果表明,该方法能够有效识别往复压缩机气阀的故障特征。
    共4页/33条