基于PSO−ELM的综采工作面液压支架姿态监测方法
针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液压支架顶梁支护姿态实时信息,对采集到的数据进行预处理,将处理后的数据输入PSO−ELM误差补偿模型中,得到解算误差预测值;同时通过卡尔曼滤波融合进行液压支架姿态解算,得到解算值;再用误差预测值对解算值进行误差补偿,从而求得更加准确的顶梁支护姿态数据。该方法只考虑加速度和角速度数据与解算误差的关系,不依赖具体的物理模型,可有效降低姿态解算累计误差。实验结果表明液压支架顶梁俯仰角平均绝对误差由补偿前的1.4208°减少到0.0580°,且误差曲线具有良好的收敛性,验证了所提方法可持续稳定地监...
基于LMD-SVD和极限学习机的滚动轴承故障诊断方法研究
针对局部均值分解(LMD)得到的PF分量对于分类方法的输入而言过大,提出了一种基于局部均值分解(LMD)-奇异值分解(SVD)和极限学习机(ELM)的故障诊断方法。首先,通过LMD将非线性非平稳的原始振动信号分解为一系列乘积函数,从而得到具有物理意义的瞬时频率;然后,采用SVD处理PF分量以压缩特征向量尺度并获得更加稳定的特征向量值;最后,基于提取的特征向量,应用运算效率和分类精度更高的ELM对轴承故障状态进行分类。试验结果表明,该方法能有效的对风机轴承在变工况条件下进行自适应诊断。
张量奇异谱分解与极限学习机的故障诊断方法
针对滚动轴承故障诊断问题,提出张量奇异谱分解(TSSA)与极限学习机(ELM)相结合的诊断方法。TSSA将一维时域振动信号转换成三阶张量,使用标准张量分解对三阶张量进行分解并重构回一维时域振动信号;为了验证TSSA的有效性,将奇异谱分解作为对比方法,仿真结果表明TSSA重构后的信号能够找到故障特征倍频,其效果优于奇异谱分解。从重构时域信号中提取时域特征参量,并使用ELM网络对其实施诊断;为验证ELM的有效性,将BP、SVM作为对比算法,诊断结果表明从诊断准确率、样本比例、诊断时间方面而言,ELM的性能比BP、SVM要好,ELM更适宜于轴承故障诊断。
PSO-GA优化ELM的高炉铁水硅含量预测
针对高炉冶炼过程的复杂、多变以及非线性等因素,提出了一种基于粒子群算法(Particleswarmoptimization,PSO)和遗传算法(Geneticalgorithm,GA)相结合来优化极限学习机(Extremelearningmachine,ELM)的高炉铁水硅含量预测模型。PSO-GA-ELM预测模型,主要是在PSO算法进行适应度值计算、粒子的速度更新和位置更新时将GA算法中的选择、交叉和变异等操作融入其中,使其输出最优的连接权值和阈值代入到ELM模型中。通过对4种不同的预测模型进行实验验证,结果表明,优化后的PSO-GA-ELM模型在进行铁水硅含量预测时的预测精度、学习能力和泛化性能均高于其他三种预测模型。
改进粒子群算法和ELM的刀具磨损量预测
为了提高车刀磨损量预测模型的训练速度和在线预测精度,提出了一种基于改进粒子群算法(Improved Particle Swarm Optimization,IPSO)和极限学习机(Extreme Learning Machine,ELM)的刀具磨损量预测方法。采集车削加工中的声发射信号,利用小波包变换理论对信号进行降噪和特征提取,并通过主成分分析对提取的特征进行降维,选取其中对刀具磨损量敏感的特征值组成特征向量。建立基于极限学习机的刀具磨损量预测模型,并通过改进粒子群算法优化模型中的初始权值和阈值。实验结果表明优化后的刀具磨损量预测模型相比于传统BP神经网络有更快的训练速度,同时改进后的粒子群算法有更好的寻优能力,提高了模型对于刀具磨损量的预测精度。
基于改进粒子群优化极限学习机的弹丸参数辨识
针对随机产生输入权重和隐含层神经元阈值导致利用极限学习机辨识弹丸气动参数时会出现辨识结果发散问题,本文将粒子群算法与极限学习机结合,并且引入自适应更新策略以及粒子变异策略,提出了一种自适应变异粒子群优化极限学习机算法。该算法利用自适应变异粒子群算法寻优产生极限学习机的输入权重和隐含层阈值,有效改善算法性能。仿真实验表明,利用自适应变异粒子群优化极限学习机算法辨识弹丸气动参数,精度高、收敛速度快,能够充分满足实际工程需要。
基于极限学习的弹丸阻力系数辨识
气动参数对弹丸的弹道特性起决定性作用,在无控弹丸研制过程中,准确获取弹丸气动参数是减小落点散布、提高打击精度的基础与关键。为了进一步提高弹丸阻力系数的辨识精度,基于质点弹道方程,通过数值仿真产生弹道数据,利用极限学习方法在多种噪声环境下实现弹丸阻力系数弹道大数据辨识。该方法随机产生输入权重以及隐含层神经元阈值,随机生成的输入权重以及隐含层神经元阈值彼此独立,且不需要迭代更新,克服了传统辨识方法辨识时间长、辨识精度低的问题。基于最小二乘原理,通过求解隐含层输出矩阵的Moor-Penrose广义逆矩阵即可确定网络最优输出权值,进而精确辨识弹丸阻力系数。在不同测量噪声条件下,将极限学习方法辨识结果与传统BP神经网络方法以及极大似然方法辨识结果进行对比研究。仿真结果表明利用极限学习方法辨识弹丸阻力...
基于PSO-ELM的液压油性能衰退预测及分析
提出基于粒子群优化(Particle Swarm Optimization,PSO)的极限学习机(Extreme Learning Machine,ELM)的液压油性能衰退预测方法。以L-HM46抗磨液压油为研究对象,设计液压油性能衰退实验,检测油液的黏度、张角、水分含量、衰退度。基于提出的液压油性能衰退预测方法,利用遍历搜索和PSO算法分别对ELM的外部、内部参数进行优化选取,从而建立最优的性能衰退预测模型。将油液的黏度、张角、水分含量作为模型输入特征向量,衰退度作为模型输出,采用PSO-ELM性能衰退预测模型对液压油性能进行仿真分析。结果表明:PSO-ELM算法计算结果与实验数据吻合较好;PSO-ELM算法预测精度达到了98.47%,高于ELM算法的预测精度,表明PSO-ELM算法能更准确地预测液压油的衰退情况,为确定换油时机提供参考。
应用多参数融合与ELM的自动机故障诊断
考虑到自动机工作环境复杂,各部件相互作用时间短,冲击性强从而导致各种响应信号相互叠加,敏感特征参量难以确定的问题,提出了一种应用多参数融合与ELM相结合的自动机故障诊断方法。首先,对自动机故障信号计算广义分形维数,在此基础上提取盒维数、信息维数、关联维数作为故障特征参量;然后引入信息熵模型,对自动机故障信号提取功率谱熵、奇异谱熵、特征空间谱熵作为特征参量来描述信号状态在频域、时域、时频域的能量变化;最后将特征参量输入到极限学习机中(ELM)进行分类。实验结果表明多参数融合能全面准确地反映故障信息,极限学习机学习速度快、结构简单,具有很好的故障分类效果。
虚拟轴承试验机基于ELM的在线控制
提出在航空关节轴承试验机加载控制系统中应用极限学习机(ELM)对电液力PID控制参数进行在线调节的方法.解决了BP神经网络梯度下降法速度太慢导致在伺服系统中PID控制实时性太差的问题.实验结果表明该方法泛化性能好、学习速度快、模型精度高具有很强的实践指导意义.












