智能仪表非线性自动校正方法探讨
0 引言
智能仪表的模拟输入通道一般由传感器、前置放大电路、有源滤波器、采样保持电路(S/H)、A/D转换器和微机系统等电路组成[1]。由于电子元器件性能参数的离散性、稳定性和温度敏感性等问题,目前还得不到根本的解决。因此,从传感器到A/D 转换之间的任何一个环节都存在非线性的问题,使得A/D转换值n与被测量x不成线性关系,即n≠ax+b(a、b为常数)[2]。如果不解决这种非线性问题,将会严重影响智能仪表的测量精度。常用的非线性校正方法有校正函数法、查表法和模型校正法[s]。
① 校正函数法要求传感器的输入/输出特性能用数学解析式表示,且输入通道的其它环节可认为是线性的。事实上,很多传感器的输入/输出特性很难用解析式表示,并且如果解析式计算太复杂,还会严重影响测量速度。因此,校正函数法的应用受到较大的局限[4]。
② 查表法必须针对每一个传感器进行校正,而且需要把大量的校正数据制成表格存入仪表内存。而一般的智能仪表的内存非常有限;当因故更换传感器时,需要重新校正、修订内存中的表格数据,应用起来也非常不方便[5]。
③ 模型校正法的基本原理是设法找到一个近似函数g1(x)或多个分段近似函数g1(x)、g2(x)、g3(x)、g4(x)等来代替原函数f(x)。模型校正法的关键是如何求出既能满足精度要求,又能满足计算简单的校正模型。通常校正模型计算太复杂会影响测量速度,所以采用模型校正法进行非线性校正时,往往采用离线处理的方式[6]。
智能仪表的特点是:采用的微控制器通常不便于进行复杂的计算,内存也非常有限,而且很多情况下实时性要求高,不允许离线校正。因此,寻找到一种简便、有效、通用的非线性自动校正方法,具有非常重要的意义。
1 非线性自动校正算法
采用分段直线方程的非线性校正原理如图l所示。设仪表的被测量用X表示,仪表中对应的灯D转换值用N表示,则曲线OM表示仪表的非线性特性曲线。现将曲线分成若干段,如果分段点的位置和分段数选取合适,则每一段曲线可近似看成是一直线段。这样,曲线OM就可看成是由若干直线段组成。如图中虚线段AB、BC可分别近似表示曲线AB和曲线BC。
图1中:曲线OM分段后各段端点对应的被测信号分别为X0, X1,X2,…,Xi-1, Xi, Xi+1,…,Xm;仪表中对应的A/D转换值分别为N0, N1, N2,…,Ni, Ni+1, … ,Nm。其中,x0为被测量的最小值,Xm为被测量的最大值。显然线段AB的斜率为:
相关文章
- 2023-01-03一种新的布设沉降观测点的方法
- 2023-01-30测量不确定度比和单台仪器检定结论的风险关系研究
- 2023-01-19电子天平的使用与维护
- 2024-07-24声学材料阻尼性能弯曲共振试验方法初探
- 2023-11-23自聚焦透镜准直设计



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。