碧波液压网 欢迎你,游客。 登录 注册

基于LSTM-SVM的风电机组齿轮箱故障诊断

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
3.67 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

针对风电机组齿轮箱的故障诊断中特征提取过分依赖人为经验和准确率不高的问题,提出一种基于长短时记忆网络(LSTM)与支持向量机(SVM)相结合的方法。对原始时域振动信号作傅里叶变换,利用LSTM神经网络自适应智能提取特征的优势,结合SVM的分类功能,实现对风电机组齿轮箱更加准确的故障诊断。仿真结果显示,该网络模型在经过16轮训练后准确率可以达到100%,使用测试集数据准确率也可以达到99.1%。
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论