基于深度确定性策略梯度算法的双轮机器人平衡控制研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
3.51 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对深度强化学习在双轮机器人中的应用问题,提出了一种基于深度确定性策略梯度算法的平衡控制方法。首先,该方法将双轮机器人作为智能体,读取状态信息并建立动作策略和奖惩机制;其次,智能体依据算法给出的随机动作指令执行,执行完动作之后反馈状态信息,算法根据反馈的状态信息给出新动作;最后,通过多回合训练使双轮机器人保持平衡。实验结果表明,通过多回合训练之后,双轮机器人的姿态角度波动范围在-4°~4°以内,双轮机器人的平稳性得到了显著改善,实现了机器人的平衡控制行为学习,证明了该方法的有效性。相关论文
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。