基于Blending集成学习的多源信息液压系统多类故障诊断研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.58 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对传统故障诊断方法准确性不高、耗时长问题,研究通过多个EfficientNet模型对传感器数据进行预训练,并使用XGBoost作为元学习器,提出了一种基于Blending集成学习的多源信息液压系统多类故障诊断方法。实验结果表明,各个子分类器在训练次数达到300次后趋于收敛,准确率均达到95%左右。该方法具有较高的准确性和鲁棒性,为液压系统故障诊断提供了一种有效的解决方案。相关论文
- 2025-01-18商用车驾驶室举升系统的介质选用研究
- 2019-09-25气体爆破法在液压管道循环清洗中的应用
- 2025-03-04海水基纳米流体分散稳定性和黏度特性研究
- 2021-11-18液压动力猫道钻杆减阻控制优化研究
- 2024-12-10合成酯型难燃液压油配方研制



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。