基于多方向振动数据的风机齿轮箱故障智能诊断
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
4.49 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
风机齿轮箱作为风机的关键传递结构,针对其关键部件的故障诊断,提出了一种基于极点对称模态分解算法(ESMD)、MobileNet V2神经网络和D-S证据理论的诊断方法。首先将3个方向的复杂的故障信号进行ESMD分解与重构,将3个方向重构后的信号输入到MobileNet V2网络中进行训练,最后利用D-S证据理论进行融合计算并得到最终的预测结果。使用某公司搭建的风机齿轮箱实验平台数据,最终通过实验表明,文中所提出的诊断方法有效,在准确率可以接受的前提下,极大地减少了运算的时间,实现了轻量化。相关论文
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。