基于小波包和改进GA-BP神经网络的轴承故障诊断
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.31 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
为了提高非平稳性轴承振动信号特征提取能力及故障诊断效率,提出了小波包结合BP神经网络的轴承故障诊断方法,将小波包对振动信号进行分解与重构,将不同频段的能量为特征参数作为BP神经网络的输入。提出通过神经网络隐层不同节点对应的平均迭代次数和网络性能作为隐层节点数选择的依据选择隐层节点个数,摆脱了经验公式选择节点数导致迭代次数高、精确率较低的缺陷,同时通过遗传算法优化神经网络初始权值和阈值,提高收敛速度并克服会陷入局部最小值等缺点。以实验室实测故障轴承数据为对象分析,对比传统BP与GA-BP的诊断效率及精确度,验证了小波包结合改进BP神经网络进行轴承故障诊断的可行性。相关论文
- 2025-01-236R焊接机械臂的运动性能及其工作空间仿真
- 2025-02-066DOF焊接机器人运动学分析及仿真
- 2021-04-26基于MATLAB Robotics Toolbox的UR5机器人轨迹规划与仿真
- 2020-10-13水面垃圾清理船的性能仿真分析
- 2021-08-31纤维缠绕机芯模自动装卸机械臂轨迹仿真与分析



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。