基于Mask R-CNN算法在轨道扣件缺陷检测中的应用
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.63 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对扣件的断裂、缺失和螺母松动等3种主要缺陷引起的扣件转动,对基于Mask R-CNN网络扣件缺陷检测系统开展研究。首先将扣件图片输入到主干特征提取网络Resnet101对图片进行卷积、池化操作,随后构造FPN(Feature Pyram id Ne tw orks),经过FPN进行多尺度特征融合后的结果输入到RPN(Re gion Propos al Ne tw orks),再由RPN筛选出一部分RoI(Region of Interest),然后对RoI进行RoI Align操作,最后对RoI进行分类、bounding_box回归和扣件掩膜(mask)生成,最后得到的实例分割检测结果。该结果不仅可以通过预测框显示正常扣件和缺陷扣件类别,还可以通过语义分割得到的扣件形状判断扣件类别。因此,在一定程度上缩小了实际操作中因网络本身引起的误差。相关论文
- 2025-02-18典型机身结构随机声疲劳寿命分析研究
- 2024-12-26轴承刚度对双叶片环保泵转子动力学特性的影响分析
- 2020-12-14关于结构件焊接变形与工艺过程的分析
- 2020-11-16高精度复杂铝合金零件加工技术
- 2020-08-25液下硫磺泵的转子动力学分析



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。