冗余机械臂轨迹的增广Lagrange-改进粒子群算法优化
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.82 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
为了减小冗余机械臂的工作时间和运动冲击,提出了基于增广lagrange-多学习行为粒子群算法的轨迹优化方法。介绍了7自由度冗余机械臂的构型,以减小工作时间和运动冲击为目标建立了约束优化模型。使用增广拉格朗日乘子法将约束优化问题转化为无约束优化问题。在粒子群算法中引入了3种新型的粒子学习行为,并依据学习行为价值确定粒子选择各学习行为的概率,既保证了粒子多样性也保证了收敛的快速性。经实验验证,多学习行为粒子群算法优化的轨迹在时间和冲击方面好于传统粒子群算法优化轨迹,且改进粒子群算法优化轨迹平滑,运动参数在约束范围内,以上结果验证了增广lagrange-多学习行为粒子群算法在机械臂轨迹优化方面的有效性和优越性。相关论文
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。