航空发动机的IGWO-KELM故障诊断方法
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.30 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
为提高航空发动机滑油系统的故障诊断有效性,提出了一种改进的灰狼算法优化核极限学习机(IGWO-KELM)的航空发动机故障诊断方法,对航空发动机进行了故障诊断技术研究。首先对航空发动机滑油系统的参数数据进行预处理,利用核独立分量分析(KICA)将数据映射到核空间,消除原始特征向量间的相关性,并提取特征系数矩阵;其次,由提取的特征矩阵创建KELM故障模型,为减少人为调节网络参数的随机性对诊断结果造成的影响,采用IGWO算法优化KELM的网络参数,并创建IGWO-KELM故障诊断模型;最后,对所创建的IGWO-KELM故障诊断模型进行了试验验证。结果表明,所提出的IGWO优化KELM的故障诊断方法能有效提高航空发动机故障诊断准确率,诊断准确率达96%,具有很好的应用前景。相关论文
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。