GMC2000A加工中心热误差建模方法研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
3.35 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
热误差是影响机床加工精度的主要因素之一,为减小热误差对机床精度的影响,提出萤火虫算法结合BP神经网络建立热误差模型。使用萤火虫算法对BP神经网络进行优化,对隐含层神经元个数进行优化取值,确定网络结构,并对网络初始权值和阈值进行了优化。以GMC2000A机床为试验对象,误差模型的输入为模糊C-均值聚类选取的机床关键位置的温度向量,输出为Y轴定位误差,通过均方根误差值RMSE、决定系数R~2和预测精度η三项指标对误差模型预测效果进行评估。结果表明,萤火虫算法优化BP神经网络误差模型取得了较好的预测结果,且在恶劣的工作环境中仍能保持一定的预测精度。相关论文
- 2020-11-24自动送料机器人的仿真分析
- 2021-01-21基于ADAMS的钻装机扒斗机构优化仿真分析
- 2024-12-27前庭康复并联机器人设计及ADAMS仿真分析
- 2024-12-27正交面齿轮均匀腐蚀后动力学仿真分析
- 2021-12-31基于ADAMS的轴向柱塞泵建模与分析



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。