DTCWT多尺度联合熵和CNN的行星齿轮故障诊断方法
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.64 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
行星齿轮常被应用于大型机电装备传动系统中,但是极端恶劣工况导致其故障频发,研究行星齿轮故障诊断有助于预知性维护,提高机电装备运行效率和可靠性。提出了一种结合双树复小波变换(Dual-Tree Complex Wavelet Transform,DTCWT)多尺度联合熵特征和卷积神经网络(Convolutional Neural Network,CNN)的故障诊断方法。利用相比于普通小波变换更高级的DTCWT,将行星齿轮故障激励的特征信息分解到不同的信号分量中,结合多尺度粗粒化、频谱熵和能量熵,实现多尺度联合熵特征量化,最终结合CNN实现行星齿轮故障类型识别。通过实验验证分析,证明所提出的方法识别率达到94.5%,具有较好的诊断效果。相关论文
- 2021-02-18基于VB6.0和智能巡检仪的数据采集系统的设计与实现
- 2021-02-07基于VB的压力传感器数据采集系统上位机软件的设计
- 2021-01-29基于C#的AUV控制软件的设计与实现
- 2021-05-31基于UG的数控机床串口通讯系统开发



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。