基于大数据的K-means聚类算法的网络安全检测应用研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
950KB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
精准的入侵检测算法是确保网络安全的有效手段,为了解决传统检测算法准确性差、检测效率不高的问题,分析了网络入侵检测的现状,利用基于PReLU激活函数的ELM算法和改进的K-means算法设计了一种多级混合式入侵检测方法。利用NSL-KDD数据集进行算法检测效果的验证,结果表明与传统的BP神经网络算法、SVM算法、ELM算法相比,多级混合式入侵检测方法检测率更高,精确度更高,并且大幅降低了误报率,在网络入侵类型判断方面具有更优异的检测效果。相关论文
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。