基于改进萤火虫算法优化KELM的投标人画像评价研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.19 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
为了给供应商或投标人的最优选择提供科学决策的依据,提出一种基于改进的萤火虫算法优化核极限学习机(CMFA-KLEM)的投标人画像评价模型。首先,将云模型理论引入萤火虫算法,提出一种改进的萤火虫算法;然后,运用层次分析法从资质信息、投标行为、技术实力、信用评价和履约表现等5个方面构建出投标人画像评价指标体系;最后,将11个投标人画像评价二级指标的得分数据作为CMFA-KELM的输入向量,投标人画像评价等级作为CMFA-KELM的输出向量,建立投标人画像评价CMFA-KELM模型。研究结果表明,与其他算法相比,CMFA-KELM具有更高的准确率、检测率和更低的误报率。相关论文
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。