基于深度强化学习的AUV路径规划研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
8.15 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对三维海洋环境水下自主航行器(AUV)路径规划问题,传统的路径规划算法在三维空间中搜索时间长,对环境的依赖性强,且环境发生改变时,需要重新规划路径,不满足实时性要求。为了使AUV能够自主学习场景并做出决策,提出一种改进的Dueling DQN算法,更改了传统的网络结构以适应AUV路径规划场景。此外,针对路径规划在三维空间中搜寻目标点困难的问题,在原有的优先经验回放池基础上提出了经验蒸馏回放池,使智能体学习失败经验从而提高模型前期的收敛速度和稳定性。仿真实验结果表明所提出的算法比传统路径规划算法具有更高的实时性,规划路径更短,在收敛速度和稳定性方面都优于标准的DQN算法。相关论文
- 2021-11-18液压动力猫道钻杆减阻控制优化研究
- 2019-09-25气体爆破法在液压管道循环清洗中的应用
- 2025-01-18商用车驾驶室举升系统的介质选用研究
- 2025-03-04海水基纳米流体分散稳定性和黏度特性研究
- 2024-12-10合成酯型难燃液压油配方研制



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。