基于自适应变异的粒子群优化BP神经网络的液压缸故障诊断方法
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.85 MB
文件类型
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
本文创新性地探讨了一种液压缸故障诊断方法,该方法应用BP神经网络算法和自适应变异的粒子群优化方法,实现液压缸故障推理和判断。与传统的PSO-BP神经网络模型对比,该模型借鉴了遗传算法的思路,应用变异理论,使得粒子能够跳脱出先前搜索到的最优位置,再次进行更广泛地搜索。这种搜索方式使得算法搜索空间有较大的提升,使得算法寻优能力大大提高,有效提升了BP神经网络液压缸故障诊断模型的效率。相关论文
- 2021-11-18液压动力猫道钻杆减阻控制优化研究
- 2024-12-10合成酯型难燃液压油配方研制
- 2019-09-25气体爆破法在液压管道循环清洗中的应用
- 2025-01-18商用车驾驶室举升系统的介质选用研究
- 2025-03-04海水基纳米流体分散稳定性和黏度特性研究



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。