碧波液压网 欢迎你,游客。 登录 注册

基于Fine-tune与DDC的变工况数控设备部件故障诊断

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
8.29 MB
文件类型
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

针对复杂工业环境下的数控设备部件故障诊断数据样本少、变工况诊断困难和准确率不高等问题,提出一种基于模型迁移的故障诊断方法。利用连续小波变换对不同工况下的原始振动数据进行预处理,建立二维时频数据集,并分为源域与目标域;利用源域数据集与CNN进行模型预训练;分别引入微调(Fine-tune)与深度域混淆(DDC)2种迁移学习方式改进模型;最终实现了基于Fine-tune与基于DDC的故障诊断模型的构建。以轴承与数控铣刀2种部件为例进行实验验证,结果证明Fine-tune与DDC均可以有效提高数控设备部件的故障诊断准确率,其中Fine-tune的泛化能力强,而DDC训练耗时更短且在复杂环境下的性能更优。
标签: 机器人
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论