基于变分模态分解和符号熵的齿轮故障诊断方法
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.50 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
为提高齿轮的故障诊断效果,提出了基于变分模态分解(Variational Modal Decomposition,VMD)和符号熵(Symbol Entropy,SE)的齿轮故障诊断方法。首先,利用VMD对齿轮故障振动信号进行分解,得到若干个本征模态分量(Intrinsic Mode Function,IMF);然后,计算IMF分量的符号熵,并将IMF符号熵组成齿轮故障特征向量;最后,将特征向量输入SVM进行故障诊断。齿轮故障诊断实测结果验证了该方法的有效性和优势。相关论文
- 2021-01-29基于C#的AUV控制软件的设计与实现
- 2021-05-31基于UG的数控机床串口通讯系统开发
- 2021-02-07基于VB的压力传感器数据采集系统上位机软件的设计
- 2021-02-18基于VB6.0和智能巡检仪的数据采集系统的设计与实现



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。