遗传小波神经网络在机床碳排放预测中的应用
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
550KB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
机床的生产加工过程中,会产生大量的碳排放,通过分析机床加工过程的碳排放相关量,预测碳排放值,从而达到降低碳排放的目的;将遗传算法对具有自适应性和函数逼近能力的小波神经网络的参数进行全局优化,来构建遗传小波神经网络模型,对机床加工过程的碳排放进行预测;并通过实验数据将遗传小波神经网络与传统小波神经网络的预测结果进行对比,结果显示,优化后的小波神经网络在机床碳排放的预测结果平均误差为0.48%,均方误差为20.5303,均优于传统神经网络,证实了在机床碳排放预测中遗传小波神经网络相对传统神经网络具有更高的逼近精度;从而能够较为准确地对机床碳排放进行预测和控制。相关论文
- 2020-11-06压路机振动系统中间传动轴的有限元分析
- 2021-03-19ANSYS在轴类零件有限元分析中的应用
- 2025-02-17重载汽车传动轴的拓扑优化与轻量化设计
- 2020-11-10基于ANSYS Workbench的某大型舱段的有限元分析
- 2025-01-13双圆弧柔轮内部应力分布研究



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。