基于ITD-AR模型和SVDD的轴承故障诊断方法研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
440KB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对滚动轴承在强背景噪声干扰下振动信号故障特征难以提取,以及实际运行中因故障样本缺乏而影响故障诊断准确性的问题,提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)的AR模型振动信号特征提取,与支持向量数据域描述(Support Vector Data Description,SVDD)相结合的轴承故障诊断方法.首先用ITD将振动信号分解成一系列的固有旋转(Proper Rotation,PR)分量,然后对每一个PR分量建立AR模型,提取模型参数和残差方差构造特征向量,用以建立轴承正常运行的SVDD模型,并以振动信号特征向量偏离SVDD模型的程度来判断轴承的运行状态.将该方法应用于滚动轴承的故障诊断,实验证明了所提方法的有效性.相关论文
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。