自适应随机共振和DEMD的单向阀早期故障诊断
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.01 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对高压隔膜泵单向阀的早期故障振动信号信噪比(SNR)低,故障特征提取困难的问题,本文提出一种自适应随机共振和微分经验模态分解(DEMD)的早期故障诊断方法。首先对原信号进行预处理,设置压缩比进行变尺度处理;然后将SNR作为自适应度函数,利用粒子群(PSO)算法优化随机共振(SR)系统参数,将优化后参数及处理后的信号输入SR系统中;最后对系统输出的信号进行DEMD算法分解,对各分量进行频谱分析,选取含特征频率的分量合成进行包络分析,以提取故障特征信息。经仿真分析与工程实验表明,该方法能够较好地提取出单向阀的早期故障特征信息。相关论文
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。