碧波液压网 欢迎你,游客。 登录 注册

CNN-SVM模型在抽油机井故障诊断中的应用

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
3.32 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

针对传统的示功图识别方法对抽油机井进行故障诊断存在人工选取示功图特征,识别准确度低等问题,基于人工智能理论,提出一种卷积神经网络(CNN)和支持向量机(SVM)相结合的示功图智能识别模型。利用卷积神经网络对示功图图像特征自动提取,利用支持向量机根据提取的深层图像特征给出故障诊断结果。结果表明,将CNN与SVM结合用于示功图识别不仅省去了人工选取示功图特征这一环节,而且识别准确度也高达99.71%,测试性能优于其他识别模型。该模型的提出为抽油机井故障的快速准确诊断提供了可行的解决方案,对油田高效作业具有重要意义。
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论