多模型Stacking集成学习的旋转机械故障诊断方法
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.37 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对传统旋转机械故障诊断方法中单一机器学习模型出现的诊断精度低、泛化能力差且性能提升有限等问题,提出了通过Stacking框架异质集成多个机器学习模型对旋转机械进行故障诊断。首先利用小波包变换对旋转机械的原始振动信号进行特征提取;然后通过贝叶斯优化和网格搜索结合的方法调节各基学习器的超参数,采用DT、KNN、SVM及RF作为初级学习器,LR作为次级学习器构建Stacking异质集成学习模型;最后通过滚动轴承和液压泵故障模拟试验,将所提模型与单相关论文
- 2021-05-31基于UG的数控机床串口通讯系统开发
- 2021-01-29基于C#的AUV控制软件的设计与实现
- 2021-02-18基于VB6.0和智能巡检仪的数据采集系统的设计与实现
- 2021-02-07基于VB的压力传感器数据采集系统上位机软件的设计



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。