基于和的滚动轴承故障诊断研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
4.65 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对实际工况下,正常样本丰富、故障样本稀缺的类别不平衡情形,导致基于深度学习的故障诊断模型诊断能力较差这一问题,提出一种基于自适应综合采样方法(ADASYN)和Swin Transformer的故障诊断模型。使用自适应综合采样方法,改善数据分布,解决实际工况中故障样本与正常样本类别不平衡问题;使用Swin Transformer网络模型代替CNN网络,并使用深度迁移学习方法,使Swin Transformer网络模型掌握判别滚动轴承故障所需的浅层权重,深层权重通过反向传播方法训练获得;之后相关论文
- 2024-12-26轴承刚度对双叶片环保泵转子动力学特性的影响分析
- 2020-08-25液下硫磺泵的转子动力学分析
- 2020-12-14关于结构件焊接变形与工艺过程的分析
- 2020-11-16高精度复杂铝合金零件加工技术
- 2025-02-18典型机身结构随机声疲劳寿命分析研究



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。