基于伪标签的弱监督迁移学习模型
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.25 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对目标域标记数据少导致迁移模型泛化能力差的问题,提出基于伪标签的半监督迁移学习模型WSTLPL。卷积神经网络用于学习原始振动数据的可迁移特征,用源域数据预训练网络;利用该网络预测目标域数据类别,将分类概率最大的类标签作为数据的伪标签。根据域自适应和伪标签学习的正则化项,对神经网络的参数施加约束,以减少学习到的可迁移特征的分布差异。结果表明:与现有诊断模型相比,该迁移模型的准确率更高。相关论文
- 2020-08-25液下硫磺泵的转子动力学分析
- 2020-12-14关于结构件焊接变形与工艺过程的分析
- 2025-02-18典型机身结构随机声疲劳寿命分析研究
- 2024-12-26轴承刚度对双叶片环保泵转子动力学特性的影响分析
- 2020-11-16高精度复杂铝合金零件加工技术



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。