基于数据驱动的数控机床自适应迭代学习控制
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.11 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
数控机床位置伺服系统受加工环境、零件形状和机床机电特性等变化因素的影响,其零件加工是一个典型的非线性、时变和不确定动力学变化过程,因此,建立其精确机制模型很困难。针对相同零件批量加工过程呈现的重复运行特点,基于被控对象的等价数据模型,提出一种基于数据驱动的自适应迭代学习控制方法。所提控制方法采用沿迭代轴的动态线性化方法,通过最小化控制目标函数,仅利用数控机床位置伺服系统的输入输出数据,实现学习控制增益的自适应更新,克服传统P型迭代学习控制方法固定增益的问题,并经过严格理论分析保证了该方法的收敛特性。仿真结果表明:提出的数据驱动自适应迭代学习控制方法,相比传统P型迭代学习控制方法,平均绝对误差和最大绝对误差分别减小了46%和56%。相关论文
- 2025-02-18典型机身结构随机声疲劳寿命分析研究
- 2020-11-16高精度复杂铝合金零件加工技术
- 2020-08-25液下硫磺泵的转子动力学分析
- 2020-12-14关于结构件焊接变形与工艺过程的分析
- 2024-12-26轴承刚度对双叶片环保泵转子动力学特性的影响分析



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。