基于FastICA的遗传径向基神经网络轴承故障诊断研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.15 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对电机轴承故障诊断效率低和诊断结果准确率不高的问题,提出一种基于FastICA的遗传径向基神经网络的优化算法。利用独立分量分析算法,将信号分离成多个独立的信号源;根据独立信号源构建独立特征向量;将分离所得的独立信号源作为样本,输入到遗传算法优化后的径向基神经网络中进行故障识别,并与其他分类算法比较。实验结果表明,对于电机轴承多信号的故障诊断,该算法具有更好的故障诊断能力。相关论文
- 2020-11-24自动送料机器人的仿真分析
- 2024-12-27正交面齿轮均匀腐蚀后动力学仿真分析
- 2024-12-27前庭康复并联机器人设计及ADAMS仿真分析
- 2021-12-31基于ADAMS的轴向柱塞泵建模与分析
- 2021-01-21基于ADAMS的钻装机扒斗机构优化仿真分析



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。