基于广义CP张量分解和多尺度排列熵的液压泵故障诊断
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
3.80 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对现有液压泵故障诊断算法故障识别精度低、实测信号中存在冗杂信息和无关成分干扰等问题,提出了一种在高维空间对液压泵振动信号进行处理和模式识别的方法。首先利用Lowner矩阵将一维时间序列信号进行高维张量化,然后基于广义CP张量分解(GCP)算法,根据数据分布类型选择适当的损失函数以确定最佳低秩模型,实现对液压泵采集得到的振动信号进行分解,降低分解损失,提高分解精度。最后选择分解结果中与原始信号相似度最高的模式分量,计算其多尺度排列熵(MPE)值进行液压泵不同故障类型的特征识别。将该文所提方法应用于液压泵故障实验台的实测数据分析,验证了其在液压泵故障诊断中的有效性。相关论文
- 2020-08-24全空气蒸发冷却空调系统的设计方法
- 2023-06-30液压冲击器抽象变量设计理论
- 2022-09-27船用液压吊艇机的设计
- 2020-09-25LZ580/73-1350连续管钻机液压系统研究
- 2020-02-25一种液压绞缆机的设计



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。