基于PSO-ACO融合算法的物流车辆路径优化与控制研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
650KB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
传统蚁群算法在解决物流配送路径问题时容易出现“早熟”问题,使路径寻找速度和优化结果受到影响。为更合理进行车辆路径调度管理,提出一种粒子群-蚁群相融合的物流配送路径规划算法,该算法充分利用粒子群较强的全局搜索能力和搜索速度快的特点,将得到的次优解转化为蚁群算法中的初始信息素的增量,最后利用蚁群算法的正反馈机制求解问题的精确解。研究结果表明:与单一算法相比,融合算法能快速有效地确定物流配送路径,具有较快的寻优速度和收敛精度,更合理的控制物流配送成本。相关论文
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。